FREE BOOKS

Author's List




PREV.   NEXT  
|<   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305  
306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   >>   >|  
ng a bit of sodium less than a pea in magnitude is plunged into the flame. The sodium soon volatilises and burns with brilliant incandescence. The beam crosses the flame, and at the same time the yellow band of the spectrum is clearly and sharply cut out, a band of intense darkness occupying its place. On withdrawing the sodium, the brilliant yellow of the spectrum takes its proper place, while the reintroduction of the flame causes the band to reappear. Let me be more precise: The yellow colour of the spectrum extends over a sensible space, blending on one side with the orange and on the other with the green. The term 'yellow band' is therefore somewhat indefinite. This vagueness may be entirely removed. By dipping the carbon-point used for the positive electrode into a solution of common salt, and replacing it in the lamp, the bright yellow band produced by the sodium vapour stands out from the spectrum. When the sodium flame is caused to act upon the beam it is that particular yellow band that is obliterated, an intensely black streak occupying its place. An additional step of reasoning leads to the conclusion that if, instead of the flame of sodium alone, we were to introduce into the path of the beam a flame in which lithium, strontium, magnesium, calcium, &c, are in a state of volatilisation, each metallic vapour would cut out a system of bands, corresponding exactly in position with the bright bands of the same metallic vapour. The light of our electric lamp shining through such a composite flame would give us a spectrum cut up by dark lines, exactly as the solar spectrum is cut up by the lines of Fraunhofer. Thus by the combination of the strictest reasoning with the most conclusive experiment, we reach the solution of one of the grandest of scientific problems--the constitution of the sun. The sun consists of a nucleus surrounded by a flaming atmosphere. The light of the nucleus would give us a continuous spectrum, like that of our common carbon-points; but having to pass through the photosphere, as our beam had to pass through the flame, those rays of the nucleus which the photosphere can itself emit are absorbed, and shaded spaces, corresponding to the particular rays absorbed, occur in the spectrum. Abolish the solar nucleus, and we should have a spectrum showing a bright line in the place of every dark line of Fraunhofer. These lines are therefore not absolutely dark, but dark by an amount
PREV.   NEXT  
|<   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305  
306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   >>   >|  



Top keywords:

spectrum

 

yellow

 
sodium
 

nucleus

 

bright

 
vapour
 
common
 
absorbed
 

carbon

 

Fraunhofer


solution
 

photosphere

 

occupying

 
brilliant
 
reasoning
 
metallic
 
volatilisation
 

shining

 

calcium

 
magnesium

position

 

system

 

strontium

 

electric

 

lithium

 
composite
 

constitution

 

shaded

 

spaces

 

Abolish


absolutely

 

amount

 
showing
 

points

 

experiment

 

grandest

 

conclusive

 
combination
 

strictest

 

scientific


problems

 

atmosphere

 

continuous

 

flaming

 

surrounded

 
introduce
 
consists
 

caused

 

reappear

 

reintroduction