FREE BOOKS

Author's List




PREV.   NEXT  
|<   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80  
81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   >>   >|  
s purely a suspension, or "hog-chain" affair, and the blocks serve no purpose, but simply increase the load on the rod and its stresses. The author's second design is an invention of his own, which the Profession at large is invited to adopt. This is really the same system as the first, except that the blocks are continuous and, presumably, fixed at the ends. When they are so fixed, the concrete will take compressive stresses and a certain portion of the shear, the remaining shear being transmitted to the rod from the concrete above it, but only through friction. Now, the frictional resistance between a steel rod and a concrete beam is not such as should be depended on in modern engineering designs. The third method is that which is used by nearly all competent designers, and it seems to the speaker that, in condemning the general practice of current reinforced designs in sixteen points, the author could have saved himself some time and labor by condemning them all in one point. What appears to be the underlying principle of reinforced concrete design is the adhesion, or bond, between the steel and the concrete, and it is that which tends to make the two materials act in unison. This is a point which has not been touched on sufficiently, and one which it was expected that Mr. Beyer would have brought out, when he illustrated certain internal static conditions. This principle, in the main, will cover the author's fifth point, wherein stirrups are mentioned, and again in the first point, wherein he asks: "Will some advocate of this type of design please state where this area can be found?" To understand clearly how concrete acts in conjunction with steel, it is necessary to analyze the following question: When a steel rod is embedded in a solid block of concrete, and that rod is put in tension, what will be the stresses in the rod and the surrounding concrete? The answer will be illustrated by reference to Fig. 10. It must be understood that the unit stresses should be selected so that both the concrete and the steel may be stressed in the same relative ratio. Assuming the tensile stress in the steel to be 16,000 lb. per sq. in., and the bonding value 80 lb., a simple formula will show that the length of embedment, or that part of the rod which will act, must be equal to 50 diameters of the rod. [Illustration: FIG. 10.] When the rod is put in tension, as indicated in Fig. 10, what will be the stresses in t
PREV.   NEXT  
|<   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80  
81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   >>   >|  



Top keywords:

concrete

 

stresses

 
design
 

author

 

tension

 

illustrated

 

reinforced

 

condemning

 

designs

 
principle

blocks

 
conjunction
 
understand
 
static
 
conditions
 

internal

 

brought

 

stirrups

 

advocate

 

mentioned


simple

 

formula

 

bonding

 

length

 

Illustration

 

diameters

 

embedment

 

stress

 
tensile
 

surrounding


answer

 

embedded

 

question

 

analyze

 
reference
 
stressed
 

relative

 
Assuming
 
understood
 

selected


compressive
 
continuous
 

system

 

portion

 

remaining

 

friction

 

transmitted

 

invited

 

purpose

 

simply