FREE BOOKS

Author's List




PREV.   NEXT  
|<   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128  
129   130   131   132   133   >>  
s the method given by the writer. It would standardize design as methods using the coefficient of elasticity cannot do. Professor Clifford, in commenting on the first point, says, "The concrete at the point of juncture must give, to some extent, and this would distribute the bearing over a considerable length of rod." It is just this local "giving" in reinforced concrete which results in cracks that endanger its safety and spoil its appearance; they also discredit it as a permanent form of construction. Professor Clifford has informed the writer that the tests on bent rods to which he refers were made on 3/4-in. rounds, embedded for 12 in. in concrete and bent sharply, the bent portion being 4 in. long. The 12-in. portion was greased. The average maximum load necessary to pull the rods out was 16,000 lb. It seems quite probable that there would be some slipping or crushing of the concrete before a very large part of this load was applied. The load at slipping would be a more useful determination than the ultimate, for the reason that repeated application of such loads will wear out a structure. In this connection three sets of tests described in Bulletin No. 29 of the University of Illinois, are instructive. They were made on beams of the same size, and reinforced with the same percentage of steel. The results were as follows: Beams 511.1, 511.2, 512.1, 512.2: The bars were bent up at third points. Average breaking load, 18,600 lb. All failed by slipping of the bars. Beams 513.1, 513.2: The bars were bent up at third points and given a sharp right-angle turn over the supports. Average breaking load, 16,500 lb. The beams failed by cracking alongside the bar toward the end. Beams 514.2, 514.3: The bars were bent up at third points and had anchoring nuts and washers at the ends over the supports. Average breaking load, 22,800 lb. These failed by tension in the steel. By these tests it is seen that, in a beam, bars without hooks were stronger in their hold on the concrete by an average of 13% than those with hooks. Each test of the group of straight bars showed that they were stronger than either of those with hooked bars. Bars anchored over the support in the manner recommended in the paper were nearly 40% stronger than hooked bars and 20% stronger than straight bars. These percentages, furthermore, do not represent all the advantages of anchored bars. The method of failure is of greatest significance. A failu
PREV.   NEXT  
|<   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128  
129   130   131   132   133   >>  



Top keywords:

concrete

 

stronger

 
slipping
 

failed

 

points

 

breaking

 

Average

 

supports

 

average

 

portion


reinforced

 
hooked
 
Clifford
 

anchored

 
Professor
 
results
 

straight

 

method

 

writer

 

alongside


cracking

 

percentages

 

percentage

 

significance

 

greatest

 

represent

 

advantages

 

failure

 

showed

 
tension

anchoring

 

recommended

 
support
 

manner

 

washers

 
applied
 

appearance

 
discredit
 

safety

 
endanger

giving

 

cracks

 

permanent

 
rounds
 

embedded

 

sharply

 
refers
 

construction

 

informed

 
coefficient