FREE BOOKS

Author's List




PREV.   NEXT  
|<   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   >>  
column is due to the inherent weakness of brittle material in compression when there are sharp corners which may spall off. Mr. Worcester says that several of the writer's indictments hit at practices which were discarded long ago, but from the attitude of their defenders this does not seem to be true. There are benders to make sharp bends in rods, and there are builders who say that they must be bent sharply in order to simplify the work of fitting and measuring them. There are examples in engineering periodicals and books, too numerous to mention, where no anchorage of any kind is provided for bent-up rods, except what grip they get in the concrete. If they reached beyond their point of usefulness for this grip, it would be all right, but very often they do not. Mr. Worcester says: "It is not necessary that a stirrup at one point should carry all the vertical tension, as this vertical tension is distributed by the concrete." The writer will concede that the stirrups need not carry all the vertical shear, for, in a properly reinforced beam, the concrete can take part of it. The shear reinforcement, however, should carry all the shear apportioned to it after deducting that part which the concrete is capable of carrying, and it should carry it without putting the concrete in shear again. The stirrups at one point should carry all the vertical tension from the portion of shear assumed to be taken by the stirrups; otherwise the concrete will be compelled to carry more than its share of the shear. Mr. Worcester states that cracks are just as likely to occur from stress in curved-up and anchored rods as in vertical reinforcement. The fact that the vertical stretching out of a beam from the top to the bottom, under its load, is exceedingly minute, has been mentioned. A curved-up bar, anchored over the support and lying near the bottom of the beam at mid-span, partakes of the elongation of the tension side of the beam and crosses the section of greatest diagonal tension in the most advantageous manner. There is, therefore, a great deal of difference in the way in which these two elements of construction act. Mr. Worcester prefers the "customary method" of determining the width of beams--so that the maximum horizontal shearing stress will not be excessive--to that suggested by the writer. He gives as a reason for this the fact that rods are bent up out of the bottom of a beam, and that not all of them run to the end. T
PREV.   NEXT  
|<   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   >>  



Top keywords:

vertical

 

concrete

 
tension
 

Worcester

 

writer

 

stirrups

 

bottom

 

anchored

 

curved

 

reinforcement


stress

 
exceedingly
 
minute
 

column

 
mentioned
 
support
 

inherent

 

compression

 

compelled

 

portion


assumed

 

states

 

brittle

 

weakness

 

material

 

cracks

 

stretching

 

partakes

 

maximum

 
determining

prefers

 

customary

 
method
 

horizontal

 

shearing

 
reason
 

excessive

 
suggested
 

construction

 
greatest

diagonal

 

section

 

crosses

 
elongation
 

advantageous

 

manner

 
elements
 

difference

 

carrying

 
anchorage