FREE BOOKS

Author's List




PREV.   NEXT  
|<   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133  
>>  
ly driven into holes in a steel angle, is made more evident, Bolts in a wooden beam built up of horizontal boards would be tightly drawn up, and the friction would play an important part in taking up the horizontal shear. Dowels without head or nut would be much less efficient; they would be more like the stirrups in a reinforced concrete beam. Furthermore, wood is much stronger in bearing than concrete, and it is tough, so that it would admit of shifting to a firm bearing against the bolt. Separate slabs of concrete with bolts or dowels through them would not make a reliable beam. The bolts or dowels would be good for only a part of the safe shearing strength of the steel, because the bearing on the concrete would be too great for its compressive strength. Mr. Mensch states that at least 99% of all reinforced structures are calculated with a reduction of 25% of the bending moment in the center. He also says "there may be some engineers who calculate a reduction of 33 per cent." These are broad statements in view of the fact that the report of the Joint Committee recommends a reduction of 33% both in slabs and beams. Mr. Mensch's remarks regarding the width of beams omit from consideration the element of span and the length needed to develop the grip of a rod. There is no need of making a rod any less in diameter than one-two-hundredth of the span. If this rule is observed, the beam with three 7/8-in. round rods will be of longer span than the one with the six 5/8-in. rods. The horizontal shear of the two beams will be equal to the total amount of that shear, but the shorter beam will have to develop that shear in a shorter distance, hence the need of a wider beam where the smaller rods are used. It is not that the writer advocates a wide stem in the T-beam, in order to dispense with the aid of the slab. What he desires to point out is that a full analysis of a T-beam shows that such a width is needed in the stem. Regarding the elastic theory, Mr. Mensch, in his discussion, shows that he does not understand the writer's meaning in pointing out the objections to the elastic theory applied to arches. The moment of inertia of the abutment will, of course, be many times that of the arch ring; but of what use is this large moment of inertia when the abutment suddenly stops at its foundation? The abutment cannot be anchored for bending into the rock; it is simply a block of concrete resting on a support. The great be
PREV.   NEXT  
|<   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133  
>>  



Top keywords:

concrete

 

Mensch

 
abutment
 

bearing

 

moment

 

reduction

 

horizontal

 

elastic

 

develop

 

theory


shorter

 
dowels
 
strength
 

writer

 
inertia
 
bending
 

reinforced

 

needed

 

smaller

 

observed


diameter

 

making

 

hundredth

 

amount

 

longer

 

distance

 

arches

 

suddenly

 

simply

 
resting

support

 

anchored

 
foundation
 

applied

 

objections

 
desires
 

dispense

 
advocates
 

analysis

 
understand

meaning

 

pointing

 

discussion

 
Regarding
 

stronger

 

Furthermore

 
stirrups
 

efficient

 

shifting

 
reliable