FREE BOOKS

Author's List




PREV.   NEXT  
|<   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129  
130   131   132   133   >>  
re by tension in the steel is an ideal failure, because it is easiest to provide against. Failures by slipping of bars, and by cracking and disintegrating of the concrete beam near the support, as exhibited by the other tests, indicate danger, and demand much larger factors of safety. Professor Clifford, in criticizing the statement that a member which cannot act until failure has started is not a proper element of design, refers to another statement by the writer, namely, "The steel in the tension side of the beam should be considered as taking all the tension." He states that this cannot take place until the concrete has failed in tension at this point. The tension side of a beam will stretch out a measurable amount under load. The stretching out of the beam vertically, alongside of a stirrup, would be exceedingly minute, if no cracks occurred in the beam. Mr. Mensch says that "the stresses involved are mostly secondary." He compares them to web stresses in a plate girder, which can scarcely be called secondary. Furthermore, those stresses are carefully worked out and abundantly provided for in any good design. To give an example of how a plate girder might be designed: Many plate girders have rivets in the flanges, spaced 6 in. apart near the supports, that is, girders designed with no regard to good practice. These girders, perhaps, need twice as many rivets near the ends, according to good and acceptable practice, which is also rational practice. The girders stand up and perform their office. It is doubtful whether they would fail in these rivet lines in a test to destruction; but a reasonable analysis shows that these rivets are needed, and no good engineer would ignore this rule of design or claim that it should be discarded because the girders do their work anyway. There are many things about structures, as every engineer who has examined many of those erected without engineering supervision can testify, which are bad, but not quite bad enough to be cause for condemnation. Not many years ago the writer ordered reinforcement in a structure designed by one of the best structural engineers in the United States, because the floor-beams had sharp bends in the flange angles. This is not a secondary matter, and sharp bends in reinforcing rods are not a secondary matter. No amount of analysis can show that these rods or flange angles will perform their full duty. Something else must be overstressed, and herein is a v
PREV.   NEXT  
|<   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129  
130   131   132   133   >>  



Top keywords:

girders

 

tension

 
secondary
 

design

 

rivets

 

designed

 

stresses

 

practice

 

engineer

 

writer


girder

 
analysis
 
amount
 

perform

 
angles
 
flange
 

concrete

 

failure

 

matter

 

statement


ignore

 

acceptable

 

needed

 

discarded

 

doubtful

 

reasonable

 

office

 

destruction

 

rational

 
States

United

 

engineers

 
structure
 

structural

 

reinforcing

 
overstressed
 

Something

 
reinforcement
 

ordered

 
examined

erected

 

structures

 

things

 
engineering
 

condemnation

 

supervision

 
testify
 

carefully

 

proper

 
element