FREE BOOKS

Author's List




PREV.   NEXT  
|<   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97  
98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   >>   >|  
which had bearing walls to curtain off the sides, less fortunate results were obtained. A temperature drop over night of nearly 50 deg., followed by a spell of alternate freezing and thawing, effected the ruin of at least the upper 2 in. of a 6-in. slab spanning 12 ft. (which was reinforced with 1/2-in. round bars, 4 in. on centers), and the remaining 4 in. was by no means of the best quality. It was thought that this particular bay would have to be replaced. Before deciding, however, a test was arranged, supports being provided underneath to prevent absolute failure. But as the load was piled up, to the extent of nearly 400 lb. per sq. ft., there was no sign of giving (over this span) other than an insignificant deflection of less than 1/4 in., which disappeared on removing the load. This slab still performs its share of the duty, without visible defect, hence it must be safe. The question naturally arises: if 4 in. of inferior concrete could make this showing, what must have been the value of the 6 in. of good concrete in the other slabs? The reinforcing in the slab, it should be stated, was continuous over several supports, was proportioned for (_w_ _l_)/8 for the clear span (about 11 ft.), and three-fourths of it was raised over the supports. This shows the value of the continuous method of reinforcing, and the enormous excess of strength in concrete structures, as proportioned by existing methods, when the reverse stresses are provided for fully and properly, though building codes may make no concession therefor. Another point may be raised, although the author has not mentioned it, namely, the absurdity of the stresses commonly considered as occurring in tensile steel, 16,000 lb. per sq. in. for medium steel being used almost everywhere, while some zealots, using steel with a high elastic limit, are advocating stresses up to 22,000 lb. and more; even the National Association of Cement Users has adopted a report of the Committee on Reinforced Concrete, which includes a clause recommending the use of 20,000 lb. on high steel. As theory indicates, and as F.E. Turneaure, Assoc. M. Am. Soc. C. E., of the University of Wisconsin, has proven by experiment, failure of the concrete encircling the steel under tension occurs when the stress in the steel is about 5,000 lb. per sq. in. It is evident, therefore, that if a stress of even 16,000 lb. were actually developed, not to speak of 20,000 lb. or more, the concrete would
PREV.   NEXT  
|<   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97  
98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   >>   >|  



Top keywords:

concrete

 

supports

 

stresses

 
provided
 

failure

 

reinforcing

 

stress

 
continuous
 
proportioned
 

raised


fortunate

 

medium

 
results
 

tensile

 

occurring

 

advocating

 

elastic

 

zealots

 

considered

 

building


temperature

 

concession

 

properly

 
reverse
 

therefor

 

Another

 

mentioned

 

absurdity

 

commonly

 
obtained

author

 

experiment

 

encircling

 

tension

 

proven

 

Wisconsin

 
University
 
occurs
 
bearing
 
developed

evident

 
Reinforced
 

Concrete

 

includes

 

clause

 
Committee
 

report

 

Association

 
Cement
 
adopted