FREE BOOKS

Author's List




PREV.   NEXT  
|<   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98  
99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   >>   >|  
be so replete with minute cracks on the tension side as to expose the embedded metal in innumerable places. Such cracks do not occur in work because, under ordinary working loads, the concrete is able to carry the load so well, by arch and dome action, as to require very little assistance from the steel, which, consequently, is never stressed to a point where cracking of the concrete will be induced. This being the case, why not recognize it, modify methods of design, and not go on assuming stresses which have no real existence? The point made by Mr. Godfrey in regard to the fallacy of sharp bends is patent, and must meet with the agreement of all who pause to think of the action really occurring. This is also true of his points as to the width of the stem of T-beams, and the spacing of bars in the same. As to elastic arches, the writer is not sufficiently versed in designs of this class to express an opinion, but he agrees entirely with the author in his criticism of retaining-wall design. What the author proposes is rational, and it is hard to see how the problem could logically be analyzed otherwise. His point about chimneys, however, is not as clear. As to columns, the writer agrees with Mr. Godfrey in many, but not in all, of his points. Certainly, the fallacy of counting on vertical steel to carry load, in addition to the concrete, has been abundantly shown. The writer believes that the sole legitimate function of vertical steel, as ordinarily used, is to reinforce the member against flexure, and that its very presence in the column, unless well tied across by loops of steel at frequent intervals, so far from increasing the direct carrying capacity, is a source of weakness. However, the case is different when a large amount of rigid vertical steel is used; then the steel may be assumed to carry all the load, at the value customary in structural steel practice, the concrete being considered only in the light of fire-proofing and as affording lateral support to the steel, increasing its effective radius of gyration and thus its safe carrying capacity. In any event the load should be assumed to be carried either by the concrete or by the steel, and, if by the former, the longitudinal and transverse steel which is introduced should be regarded as auxiliary only. Vertical steel, if not counted in the strength, however, may on occasion serve a very useful practical purpose; for instance, the writer once had a job wher
PREV.   NEXT  
|<   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98  
99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   >>   >|  



Top keywords:

concrete

 

writer

 

vertical

 
fallacy
 
Godfrey
 

design

 

author

 

capacity

 
assumed
 

carrying


increasing
 

agrees

 

points

 

cracks

 

action

 

expose

 

source

 

weakness

 
embedded
 

direct


intervals

 

However

 

tension

 

amount

 

frequent

 

innumerable

 

function

 

ordinarily

 

reinforce

 

legitimate


believes

 

abundantly

 
member
 

customary

 

column

 

flexure

 

places

 
presence
 
considered
 

auxiliary


Vertical

 
counted
 

strength

 

regarded

 
introduced
 
longitudinal
 

transverse

 

occasion

 

instance

 

practical