FREE BOOKS

Author's List




PREV.   NEXT  
|<   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88  
89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   >>   >|  
ars of the type indicated, in combination with longitudinal bars as described, tying together thoroughly the component parts of the beam in a vertical plane, a marked increase in stiffness, if not strength, is secured. This being the case, who can gainsay the utility of the U-bar? Of course, near the ends, in case continuity of action is realized, whereupon the stresses are reversed, the U-bars need to be inverted, although frequently inversion is not imperative with the type of U-bar described, the simple hooking of the upper ends over the upper horizontal steel being sufficient. As to whether or not the U-bars act with the horizontal and diagonal steel to form truss systems is relatively unessential; in all probability there is some such action, which contributes somewhat to the total strength, but at most it is of minor importance. Mr. Godfrey's points as to fallacy of truss action seem to be well taken, but his conclusions in consequence--that U-bars serve no purpose--are impractical. The number of U-bars needed is also largely a matter of practice, although subject to calculation. Practice indicates that they should be spaced no farther apart than the effective depth of the member, and spaced closer or made heavier toward the ends, in order to keep pace with cumulating shear. They need this close spacing in order to serve as an adequate saddle for the main bars, as well as to furnish, with the lighter "stringing" rods, an adequate support to the slab bars. They should have the requisite stiffness in the bends to carry their burden without appreciable sagging; it will be found that 5/16 in. is about the minimum practical size, and that 1/2 in. is as large as will be necessary, even for very deep beams with heavy reinforcement. If the size and number of U-bars were to be assigned by theory, there should be enough of them to care for fully 75% of the horizontal shear, the adhesion of the concrete being assumed as adequate for the remainder. Near the ends, of course, the inclined steel, resulting from bending up some of the horizontal bars, if it is carried well across the support to secure an adequate anchorage, or other equivalent anchorage is provided, assists in taking the horizontal shear. The embedment, too, of large stone in the body of the beam, straddling, as it were, the neutral plane, and thus forming a lock between the flange and the stem, may be considered as assisting materially in taking ho
PREV.   NEXT  
|<   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88  
89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   >>   >|  



Top keywords:

horizontal

 

adequate

 
action
 

strength

 

spaced

 

support

 

number

 

stiffness

 

taking

 
anchorage

sagging

 
appreciable
 
embedment
 
minimum
 
practical
 

neutral

 

burden

 

lighter

 

stringing

 

furnish


materially

 

saddle

 

assisting

 

spacing

 

requisite

 

straddling

 

considered

 

assists

 
concrete
 

assumed


remainder

 

adhesion

 

flange

 

secure

 
carried
 
forming
 

bending

 
inclined
 
resulting
 

reinforcement


theory
 
equivalent
 

provided

 

assigned

 

largely

 

inversion

 

imperative

 

simple

 

hooking

 

frequently