FREE BOOKS

Author's List




PREV.   NEXT  
|<   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82  
83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   >>   >|  
the distribution and the intensity of the resistance in the concrete to a force acting parallel to the rod. A similar triangle may be drawn, Fig. 11, showing the resistance of the rod and the resultant distribution in the concrete to a force perpendicular to the rod. Here the original force would cause plain shear in the rod, were the latter fixed in position. Since this cannot be the case, the force will be resolved into two components, one of which will cause a tensile stress in the rod and the other will pass through the centroid of the compressive stress area. This is indicated in Fig. 11, which, otherwise, is self-explanatory. [Illustration: FIG. 12.] Rods are not very often placed in such a position, but where it is unavoidable, as in construction joints in the middle of slabs or beams, they serve a very good purpose; but, to obtain the best effect from them, they should be placed near the center of the slab, as in Fig. 12, and not near the top, as advocated by some writers. If the concrete be overstressed at the points where the rod tends to bend, that is, if the rods are spaced too far apart, disintegration will follow; and, for this reason, they should be long enough to have more than 50 diameters gripped by the concrete. This leads up to the author's seventh point, as to the overstressing of the concrete at the junction of the diagonal tension rods, or stirrups, and the bottom reinforcement. [Illustration: FIG. 13.] Analogous with the foregoing, it is easy to lay off the stress triangles and to find the intensity of stress at the maximum points, in fact at any point, along the tension rods and the bottom chord. This is indicated in Fig. 13. These stress triangles will start on the rod 50 diameters back from the point in question and, although the author has indicated in Fig. 1 that only two of the three rods are stressed, there must of necessity also be some stress in the bottom rod to the left of the junction, on account of the deformation which takes place in any beam due to bending. Therefore, all three rods at the point where they are joined, are under stress, and the triangles can be laid off accordingly. It will be noticed that the concrete will resist the compressive components, not at any specific point, but all along the various rods, and with the intensities shown by the stress triangles; also, that some of these triangles will overlap, and, hence, a certain readjustment, or superimp
PREV.   NEXT  
|<   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82  
83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   >>   >|  



Top keywords:

stress

 

concrete

 
triangles
 

bottom

 

distribution

 

compressive

 
Illustration
 
points
 

intensity

 
junction

tension

 
author
 

diameters

 

resistance

 

components

 

position

 

maximum

 
foregoing
 

seventh

 
gripped

overstressing

 

diagonal

 

Analogous

 

reinforcement

 

stirrups

 

stressed

 

noticed

 

resist

 

joined

 
specific

readjustment
 

superimp

 

overlap

 

intensities

 

Therefore

 
bending
 

question

 

necessity

 
deformation
 
account

advocated

 

tensile

 

resolved

 

explanatory

 

centroid

 

triangle

 

similar

 

acting

 

parallel

 

showing