FREE BOOKS

Author's List




PREV.   NEXT  
|<   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28  
29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   >>   >|  
the water blown out by compressed air, it was very stable. A special timbering method was devised, and Tunnel _B_ was driven from Station 66 + 10 to the shaft with compressed air, but without a shield. In the meantime the shield was re-erected in Tunnel _A_ and was shoved through the soft ground from Station 65 + 48 nearly to the river shaft, where it was dismantled. There was nothing unusual about the shield work; it was about the same as that under the river, which is fully described elsewhere. In spite of great care in excavating in front of the shield, and prompt grouting behind it, there was a small settlement of the building above, amounting to about 1-1/2 in. in the walls and about 5 in. in the ground floors which were of concrete laid like a sidewalk directly upon the ground. Whether this settlement was due to ground lost in the shield work or to a compacting of the ground on account of its being dried out by compressed air, it is impossible to say. The interesting features of this work from East Avenue to the river shafts are the mining methods and the building of the iron tube without a shield. EXCAVATION IN ALL ROCK. Where the tunnel was all in good rock two distinct methods were used. The first was the bottom-heading-and-break-up, and the second, the top-heading-and-bench method. The first is illustrated by Figs. 1 and 2, Plate LXIII. The bottom heading, 13 ft. wide and 9 ft. high, having first been driven, a break-up was started by blasting down the rock, forming a chamber the full height of the tunnel. The timber platform, shown in the drawing, was erected in the bottom heading, and extended through the break-up chamber. The plan was then to drill the entire face above the bottom heading and blast it down upon the timber staging, thus maintaining a passage below for the traffic from the heading and break-ups farther down the line. Starting with the condition indicated by Plate XIII, the face was drilled, the columns were then taken down and the muck pile was shoveled through holes in the staging into muck cars below. The face was then blasted down upon the staging, the drill columns were set up on the muck pile, and the operation was repeated. This method has the advantage that the bottom heading can be pushed through rapidly, and from it the tunnel may be attacked at a number of points at one time. It was found to be more expensive than the top-heading-and-bench method, and as soon as the depre
PREV.   NEXT  
|<   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28  
29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   >>   >|  



Top keywords:
heading
 

shield

 

ground

 

bottom

 

method

 

staging

 
tunnel
 

compressed

 

settlement

 

building


chamber

 

methods

 

Station

 

columns

 
Tunnel
 

erected

 

timber

 

driven

 

drawing

 

platform


extended
 

height

 

forming

 
expensive
 
blasting
 

started

 

illustrated

 

operation

 

repeated

 

points


blasted

 

rapidly

 

attacked

 

pushed

 

advantage

 

number

 

shoveled

 
passage
 

traffic

 

maintaining


farther

 

drilled

 
condition
 
Starting
 

entire

 

features

 
unusual
 

grouting

 
prompt
 

excavating