FREE BOOKS

Author's List




PREV.   NEXT  
|<   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34  
35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   >>   >|  
t number of posts had been placed, the blocking on which the caisson had rested was knocked or blasted out, and the rock underneath was excavated. The blocking was then re-set at a lower elevation. The posts under the cutting edge were then chopped part way through and the air pressure was lowered about 10 lb., which increased the net weight to more than 4,000,000 lb. The posts then gradually crushed and the caissons settled to the new blocking. The tilt or level of the caisson was controlled by chopping the posts more on the side which was desired to move first. The caisson nearly always carried a very large net weight, usually about 870 tons. The concrete in the walls, which was added as the caisson was being sunk, was kept at about the elevation of the ground. There was generally a depth of from 5 to 20 ft. of water ballast on top of the roof of the working chamber. The air pressure in the working chamber was usually much less than the hydrostatic head outside the caisson. For example, the average air pressure in the south caisson during January, 1906, was 16-1/2 lb., while the average head was 62.5 ft., equivalent to 27 lb. per sq. in. Under these conditions, there was a continued but small leakage into the caisson of from 15,000 to 20,000 gal. per day. In the rock the excavation was always carried from 2 to 5 in. outside the cutting edge. As soon as the cutting edge was cleared, bags of clay were placed under it in a well-tiered, solid pile, so that when the caisson was lowered the bags were cut through and most of the clay, bags and all, was squeezed back of the cutting edge between the rock and the caisson. Table 1 shows the relation of the final position of the caissons to that designed. The cost of rock excavation in the caisson was $4.48 per cu. yd. for labor and $10.54 for top charges. The bottom of the shaft is an inverted concrete arch, 4 ft. thick, water-proofed with 6-ply felt and pitch. As soon as the caisson was down to its final position and the excavation was completed, concrete was deposited on the uneven rock surfaces, brought up to the line of the water-proofing, and given a smooth 1-in. mortar coat. The felt was stuck together in 3-ply mats on the surface with hot coal-tar pitch. These were rolled and sent down into the working chamber, where they were put down with cold pitch liquid at 60 deg. Fahr. Each sheet of felt overlapped the one below 6 in. The water-proofing was covered by a 1-
PREV.   NEXT  
|<   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34  
35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   >>   >|  



Top keywords:
caisson
 

cutting

 

chamber

 

pressure

 

working

 

excavation

 
blocking
 

concrete

 

proofing

 

position


average

 

carried

 

weight

 

lowered

 
caissons
 

elevation

 

designed

 

mortar

 

relation

 

liquid


covered
 

squeezed

 

overlapped

 
charges
 
bottom
 

surface

 

rolled

 

surfaces

 

uneven

 

brought


completed

 

deposited

 

inverted

 

smooth

 

proofed

 

January

 

desired

 
chopping
 

controlled

 

settled


crushed

 

blasted

 
underneath
 
knocked
 

rested

 

number

 
excavated
 

increased

 
gradually
 

chopped