FREE BOOKS

Author's List




PREV.   NEXT  
|<   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   >>  
shield was driven above grade and it was desired to descend, the passage of the shield over the summit produced a like effect. In all these movements, with the space between the tail of the shield and the iron packed tight with pugging, the upward thrust of the shield tended to flatten the iron in the bottom and occasional broken plates were the result. The free use of the taper rings, placed so as to relieve the binding of the lining on the tail of the shield, forces the tunnel to follow the variations in the grade of the shield, but reduces greatly the injuries to the rings from this action. In Tunnel _D_, where very high vertical leads were required through the soft sand, combined with a marked tendency of the shield to settle, the shield was badly cramped on the iron and dragged along it at the top. The bearing of the iron on its soft foundation tended to thrust up the bottom in this case also, as shown by the opening of the bottom cross-joints when the bolts were slackened to relieve the strain during a shove. The anticipated cracks in the crown plates, which have been more frequently observed in other tunnels, did not occur here, and were not found elsewhere except in one place in Tunnel _B_ where they were traced to a similar action of the shield. The cracks resulting from the movements of the shield, as briefly described above, in this third case were not confined to any particular type, but occurred more frequently at the extreme end of the circumferential flange than at any other point. The number of broken plates occurring in the river tunnels was 319, or 0.42% of the total number erected. Of these, 52 were found and removed, either before or immediately after a shove, by far the greater number being broken in handling before or during erection. The remaining 267 are considered below. _Repair of Broken Plates._--On the completion of a shove, the tail of the shield lacked about 5 in. of covering the full width of the last ring, and the removal of a plate broken during the shove, therefore, would have exposed the ground at the tail of the shield. With a firm material in the bottom, this introduced no particular difficulties, and, under such conditions, a broken plate was usually removed at once. In the sand, however, and especially on the Manhattan side where it was quick and flowing, the removal of a plate was attended with some danger, and such plates were usually left to be removed on the completion of
PREV.   NEXT  
|<   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   >>  



Top keywords:

shield

 

broken

 

plates

 
bottom
 

number

 
removed
 

action

 

removal

 
relieve
 
tunnels

completion

 

cracks

 
frequently
 
Tunnel
 
thrust
 

movements

 

tended

 

confined

 

Manhattan

 
erected

flange

 
circumferential
 

extreme

 

occurring

 

flowing

 

attended

 
danger
 
occurred
 

material

 

covering


introduced

 

difficulties

 

ground

 

lacked

 

handling

 

erection

 

greater

 
immediately
 

exposed

 

remaining


Broken
 

Plates

 
Repair
 
considered
 
conditions
 

anticipated

 

lining

 
forces
 
tunnel
 

follow