FREE BOOKS

Author's List




PREV.   NEXT  
|<   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39  
40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   >>   >|  
should assure himself that the weights in a set previously unfamiliar to him are relatively correct by a few simple tests. For example, he should make sure that in his set two weights of the same denomination (i.e., two 10-gram weights, or the two 100-milligram weights) are actually equal and interchangeable, or that the 500-milligram weight is equal to the sum of the 200, 100, 100, 50, 20, 20 and 10-milligram weights combined, and so on. If discrepancies of more than a few tenths of a milligram (depending upon the total weight involved) are found, the weights should be returned for correction. The rider should also be compared with a 5 or 10-milligram weight. In an instructional laboratory appreciable errors should be reported to the instructor in charge for his consideration. When the highest accuracy is desired, the weights may be calibrated and corrections applied. A calibration procedure is described in a paper by T.W. Richards, !J. Am. Chem. Soc.!, 22, 144, and in many large text-books. Weights are inevitably subject to corrosion if not properly protected at all times, and are liable to damage unless handled with great care. It is obvious that anything which alters the weight of a single piece in an analytical set will introduce an error in every weighing made in which that piece is used. This source of error is often extremely obscure and difficult to detect. The only safeguard against such errors is to be found in scrupulous care in handling and protection on the part of the analyst, and an equal insistence that if several analysts use the same set of weights, each shall realize his responsibility for the work of others as well as his own. BURETTES A burette is made from a glass tube which is as uniformly cylindrical as possible, and of such a bore that the divisions which are etched upon its surface shall correspond closely to actual contents. The tube is contracted at one extremity, and terminates in either a glass stopcock and delivery-tube, or in such a manner that a piece of rubber tubing may be firmly attached, connecting a delivery-tube of glass. The rubber tubing is closed by means of a glass bead. Burettes of the latter type will be referred to as "plain burettes." The graduations are usually numbered in cubic centimeters, and the latter are subdivided into tenths. One burette of each type is desirable for the analytical procedures which follow. PREPARATION OF A BURETTE FOR USE
PREV.   NEXT  
|<   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39  
40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   >>   >|  



Top keywords:

weights

 

milligram

 

weight

 

delivery

 

tubing

 

tenths

 

burette

 

analytical

 

errors

 
rubber

responsibility
 
realize
 

introduce

 
difficult
 

obscure

 
extremely
 
BURETTES
 

analysts

 

source

 

safeguard


protection

 

scrupulous

 
handling
 
analyst
 

weighing

 

insistence

 

detect

 

terminates

 

numbered

 

centimeters


graduations

 

burettes

 

Burettes

 

referred

 

subdivided

 

BURETTE

 

PREPARATION

 
follow
 

desirable

 

procedures


closed

 

surface

 
correspond
 

closely

 

etched

 

divisions

 
cylindrical
 
actual
 

contents

 
manner