FREE BOOKS

Author's List




PREV.   NEXT  
|<   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80  
81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   >>   >|  
slight action of the permanganate upon the manganous sulphate formed during titration. If the solution turns brown, it is an evidence of insufficient acid, and more should be immediately added. The results are likely to be less accurate in this case, however, as a consequence of secondary reactions between the ferrous iron and the manganese dioxide thrown down. It is wiser to discard such results and repeat the process.] [Note 5: The potassium permanganate may, of course, be diluted and brought to an exactly 0.1 N solution from the data here obtained. The percentage of iron in the iron wire must be taken into account in all calculations.] !Method B! !Oxalate Standards! PROCEDURE.--Weigh out two portions of pure sodium oxalate of 0.25-0.3 gram each into beakers of about 600 cc. capacity. Add about 400 cc. of boiling water and 20 cc. of manganous sulphate solution (Note 1). When the solution of the oxalate is complete, heat the liquid, if necessary, until near its boiling point (70-90 deg.C.) and run in the standard permanganate solution drop by drop from a burette, stirring constantly until an end-point is reached (Note 2). Make a blank test with 20 cc. of manganous sulphate solution and a volume of distilled water equal to that of the titrated solution to determine the volume of the permanganate solution required to produce a very slight pink. Deduct this volume from the amount of permanganate solution used in the titration. From the data obtained, calculate the relation of the permanganate solution to the normal. The reaction involved is: 5Na_{2}C_{2}O_{4} + 2KMnO_{4} + 8H_{2}SO_{4} --> 5Na_{2}SO_{4} + K_{2}SO_{4} + 2MnSO_{4} + 10CO_{2} + 8H_{2}O [Note 1: The manganous sulphate titrating solution is made by dissolving 20 grams of MnSO_{4} in 200 cubic centimeters of water and adding 40 cc. of concentrated sulphuric acid (sp. gr. 1.84) and 40 cc. or phosphoric acid (85%).] [Note 2: The reaction between oxalates and permanganates takes place quantitatively only in hot acid solutions. The temperatures must not fall below 70 deg.C.] DETERMINATION OF IRON IN LIMONITE !Method A! The procedures, as here prescribed, are applicable to iron ores in general, provided these ores contain no constituents which are reduced by zinc or stannous chloride and reoxidized by permanganates. Many iron ores contain titanium, and this element among others does interfere with the determination of iron by the
PREV.   NEXT  
|<   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80  
81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   >>   >|  



Top keywords:
solution
 

permanganate

 

sulphate

 

manganous

 

volume

 
Method
 

oxalate

 

obtained

 

permanganates

 

reaction


slight

 

boiling

 

titration

 

results

 
constituents
 

involved

 

normal

 
general
 
calculate
 

relation


element
 

interfere

 
provided
 

stannous

 

required

 

produce

 

determine

 

titrated

 

chloride

 

titanium


reduced

 
amount
 
Deduct
 

determination

 

titrating

 

LIMONITE

 

oxalates

 

DETERMINATION

 

temperatures

 

solutions


quantitatively

 

procedures

 

phosphoric

 

applicable

 
dissolving
 

centimeters

 

adding

 
reoxidized
 
prescribed
 

concentrated