FREE BOOKS

Author's List




PREV.   NEXT  
|<   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39  
40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   >>   >|  
be proportioned in the same manner as for chimneys, by finding the tension exerted to pull these blocks apart and then providing steel to take that tension. The fifteenth point concerns steel in compression in reinforced concrete columns or beams. It is common practice--and it is recommended in the most pretentious works on the subject--to include in the strength of a concrete column slender longitudinal rods embedded in the concrete. To quote from one of these works: "The compressive resistance of a hooped member exceeds the sum of the following three elements: (1) The compressive resistance of the concrete without reinforcement. (2) The compressive resistance of the longitudinal rods stressed to their elastic limit. (3) The compressive resistance which would have been produced by the imaginary longitudinals at the elastic limit of the hooping metal, the volume of the imaginary longitudinals being taken as 2.4 times that of the hooping metal." This does not stand the test, either of theory or practice; in fact, it is far from being true. Its departure from the truth is great enough and of serious enough moment to explain some of the worst accidents in the history of reinforced concrete. It is a nice theoretical conception that the steel and the concrete act together to take the compression, and that each is accommodating enough to take just as much of the load as will stress it to just the right unit. Here again, initial stress plays an important part. The shrinkage of the concrete tends to put the rods in compression, the load adds more compression on the slender rods and they buckle, because of the lack of any adequate stiffening, long before the theorists' ultimate load is reached. There is no theoretical or practical consideration which would bring in the strength of the hoops after the strength of the concrete between them has been counted. All the compression of a column must, of necessity, go through the disk of concrete between the two hoops (and the longitudinal steel). No additional strength in the hoops can affect the strength of this disk, with a given spacing of the hoops. It is true that shorter disks will have more strength, but this is a matter of the spacing of the hoops and not of their sectional area, as the above quotation would make it appear. Besides being false theoretically, this method of investing phantom columns with real strength is woful
PREV.   NEXT  
|<   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39  
40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   >>   >|  



Top keywords:

concrete

 

strength

 

compression

 

compressive

 

resistance

 

longitudinal

 

theoretical

 

slender

 

stress

 
imaginary

hooping
 

longitudinals

 

column

 
elastic
 

spacing

 

practice

 
tension
 

reinforced

 
columns
 

buckle


method
 

theoretically

 

stiffening

 

theorists

 

adequate

 

phantom

 

initial

 

investing

 

shrinkage

 

ultimate


important

 

practical

 

counted

 
shorter
 

necessity

 

additional

 

consideration

 
Besides
 

affect

 
matter

sectional
 
quotation
 

reached

 

include

 

embedded

 

subject

 

pretentious

 

recommended

 
elements
 

exceeds