FREE BOOKS

Author's List




PREV.   NEXT  
|<   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43  
44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   >>   >|  
end of a bar will develop only a small part of the strength of the bar, and, of course, should not be relied on where the depth of penetration is inadequate; and, because of the necessity of efficient anchorage of the reinforcing bars where one member of a structure unites with another, it is believed that in some instances economy might be subserved by the use of shop shapes and shop connections in steel, instead of the ordinary reinforcing bars. Such cases are comparatively few, however, for the material in common use is readily adapted to the design, in the ordinary engineering structure, and only requires that its limitations be observed, and that the designer be as conscientious and consistent in detailing as though he were designing in steel. This paper deserves attention, and it is hoped that each point therein will receive full and free discussion, but its main purport is a plea for simplicity, consistency, and conservatism in design, with which the writer is heartily in accord. S. BENT RUSSELL, M. AM. SOC. C. E. (by letter).--The author has given expression in a forcible way to feelings possessed no doubt by many careful designers in the field in question. The paper will serve a useful purpose in making somewhat clearer the limitations of reinforced concrete, and may tend to bring about a more economical use of reinforcing material. It is safe to say that in steel bridges, as they were designed in the beginning, weakness was to be found in the connections and details, rather than in the principal members. In the modern advanced practice of bridge design the details will be found to have some excess of strength over the principal members. It is probable that the design of reinforced concrete structures will take the same general course, and that progress will be made toward safety in minor details and economy in principal bars. Many of the author's points appear to be well taken, especially the first, the third, and the eighth. In regard to shear bars, if it is assumed that vertical or inclined bars add materially to the strength of short deep beams, it can only be explained by viewing the beam as a framed structure or truss in which the compression members are of concrete and the tension members of steel. It is evident that, as generally built, the truss will be found to be weak in the connections, more particularly, in some cases, in the connections between the tension and compression members, as
PREV.   NEXT  
|<   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43  
44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   >>   >|  



Top keywords:

members

 

design

 

connections

 

reinforcing

 

concrete

 

structure

 

principal

 

details

 

strength

 
limitations

material
 

economy

 

ordinary

 
reinforced
 

compression

 

tension

 
author
 

purpose

 
modern
 

economical


practice
 

question

 

excess

 

bridge

 

making

 

advanced

 

beginning

 

weakness

 

designed

 

bridges


probable

 

clearer

 

materially

 
assumed
 

vertical

 

inclined

 

explained

 
viewing
 

generally

 
framed

evident
 
safety
 

progress

 

general

 

points

 

eighth

 

regard

 

structures

 
comparatively
 

common