FREE BOOKS

Author's List




PREV.   NEXT  
|<   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41  
42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   >>   >|  
ft. 6 in. long, with ten longitudinal, round rods, 1/2 in. in diameter, and 1-1/2-in. by 3/16-in. circular bands (having two 1/2-in. rivets in the splice), spaced 4 in. apart, the circles being 7 in. in diameter. It carried an ultimate load of 130,000 lb., which is much less than half "the compressive resistance of a hooped member," worked out according to the authoritative quotation before given. Another similar column stood a little more than half that "compressive resistance." Five of the seventeen tests on the concrete-steel columns, made at Minneapolis, stood less than the plain concrete columns. So much for the longitudinal rods, and for hoops which are not close enough to stiffen the rods; and yet, in reading the literature on the subject, any one would be led to believe that longitudinal rods and hoops add enormously to the strength of a concrete column. The sixteenth indictment against common practice is in reference to flat slabs supported on four sides. Grashof's formula for flat plates has no application to reinforced concrete slabs, because it is derived for a material strong in all directions and equally stressed. The strength of concrete in tension is almost nil, at least, it should be so considered. Poisson's ratio, so prominent in Grashof's formula, has no meaning whatever in steel reinforcement for a slab, because each rod must take tension only; and instead of a material equally stressed in all directions, there are generally sets of independent rods in only two directions. In a solution of the problem given by a high English authority, the slab is assumed to have a bending moment of equal intensity along its diagonal. It is quite absurd to assume an intensity of bending clear into the corner of a slab, and on the very support equal to that at its center. A method published by the writer some years ago has not been challenged. By this method strips are taken across the slab and the moment in them is found, considering the limitations of the several strips in deflection imposed by those running at right angles therewith. This method shows (as tests demonstrate) that when the slab is oblong, reinforcement in the long direction rapidly diminishes in usefulness. When the ratio is 1:1-1/2, reinforcement in the long direction is needless, since that in the short direction is required to take its full amount. In this way French and other regulations give false results, and fail to work out. If the writer
PREV.   NEXT  
|<   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41  
42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   >>   >|  



Top keywords:

concrete

 

direction

 

method

 

directions

 

longitudinal

 

reinforcement

 
strength
 

strips

 

writer

 
tension

stressed

 

equally

 

bending

 

material

 
formula
 

Grashof

 
intensity
 

moment

 

columns

 

resistance


compressive
 

diameter

 

column

 

rapidly

 

diminishes

 
amount
 

required

 

usefulness

 

needless

 

regulations


results

 

independent

 

generally

 

solution

 

problem

 
oblong
 

assumed

 
authority
 

English

 

French


assume

 
angles
 

therewith

 

imposed

 

deflection

 

limitations

 
running
 

corner

 
absurd
 
demonstrate