FREE BOOKS

Author's List




PREV.   NEXT  
|<   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33  
34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   >>   >|  
neering department of a college, for some ideas for the students to work up for theses, and suggested that they test beams of this sort. He was met by the astounding and fatuous reply that such would not be reinforced concrete beams. They would certainly be concrete beams, and just as certainly be reinforced. Bulletin 29 of the University of Illinois Experiment Station contains a record of tests of reinforced concrete beams of this sort. They failed by the crushing of the concrete or by failure in the steel rods, and nearly all the cracks were in the middle third of the beams, whereas beams rich in shear rods cracked principally in the end thirds, that is, in the neighborhood of the shear rods. The former failures are ideal, and are easier to provide against. A crack in a beam near the middle of the span is of little consequence, whereas one near the support is a menace to safety. The seventh point of common practice to which attention is called, is the manner in which bending moments in so-called continuous beams are juggled to reduce them to what the designer would like to have them. This has come to be almost a matter of taste, and is done with as much precision or reason as geologists guess at the age of a fossil in millions of years. If a line of continuous beams be loaded uniformly, the maximum moments are negative and are over the supports. Who ever heard of a line of beams in which the reinforcement over the supports was double that at mid-spans? The end support of such a line of beams cannot be said to be fixed, but is simply supported, hence the end beam would have a negative bending moment over next to the last support equal to that of a simple span. Who ever heard of a beam being reinforced for this? The common practice is to make a reduction in the bending moment, at the middle of the span, to about that of a line of continuous beams, regardless of the fact that they may not be continuous or even contiguous, and in spite of the fact that the loading of only one gives quite different results, and may give results approaching those of a simple beam. If the beams be designed as simple beams--taking the clear distance between supports as the span and not the centers of bearings or the centers of supports--and if a reasonable top reinforcement be used over these supports to prevent cracks, every requirement of good engineering is met. Under extreme conditions such construction might be heavily stressed
PREV.   NEXT  
|<   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33  
34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   >>   >|  



Top keywords:

supports

 

concrete

 

reinforced

 

continuous

 

support

 

simple

 
bending
 

middle

 

reinforcement

 
cracks

moments

 

called

 

results

 

common

 
centers
 

practice

 
negative
 

moment

 

simply

 

supported


extreme
 

double

 

heavily

 

loaded

 

millions

 
stressed
 

fossil

 

uniformly

 

maximum

 

conditions


construction

 

designed

 

taking

 

approaching

 

distance

 
reasonable
 

bearings

 
reduction
 

requirement

 

loading


contiguous

 
prevent
 

engineering

 

manner

 

record

 

failed

 
Station
 

University

 
Illinois
 
Experiment