FREE BOOKS

Author's List




PREV.   NEXT  
|<   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174  
175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   >>   >|  
, and the first train passed through the Britannia bridge in 1850. Though each girder has been made continuous over the four spans it has not quite the proportions over the piers which a continuous girder should have, and must be regarded as an imperfectly continuous girder. The spans were in fact designed as independent girders, the advantage of continuity being at that time imperfectly known. The vertical sides of the girders are stiffened so that they amount to 40% of the whole weight. This was partly necessary to meet the uncertain conditions in floating when the distribution of supporting forces was unknown and there were chances of distortion. [Illustration: FIG. 16.--Britannia Bridge.] [Illustration: FIG. 17.--Britannia Bridge (Cross Section of Tubular Girder).] Wrought iron and, later, steel plate web girders were largely used for railway bridges in England after the construction of the Conway and Menai bridges, and it was in the discussions arising during their design that the proper function of the vertical web between the top and bottom flanges of a girder first came to be understood. The proportion of depth to span in the Britannia bridge was 1/16. But so far as the flanges are concerned the stress [v.04 p.0540] to be resisted varies inversely as the depth of the girder. It would be economical, therefore, to make the girder very deep. This, however, involves a much heavier web, and therefore for any type of girder there must be a ratio of depth to span which is most economical. In the case of the plate web there must be a considerable excess of material, partly to stiffen it against buckling and partly because an excess of thickness must be provided to reduce the effect of corrosion. It was soon found that with plate webs the ratio of depth to span could not be economically increased beyond 1/15 to 1/12. On the other hand a framed or braced web afforded opportunity for much better arrangement of material, and it very soon became apparent that open web or lattice or braced girders were more economical of material than solid web girders, except for small spans. In America such girders were used from the first and naturally followed the general design of the earlier timber bridges. Now plate web girders are only used for spans of less than 100 ft. Three types of bracing for the web very early developed--the Warren type in which the bracing bars form equilateral triangles, the Whipple Murphy in which the
PREV.   NEXT  
|<   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174  
175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   >>   >|  



Top keywords:
girders
 

girder

 

Britannia

 
partly
 

bridges

 

material

 

continuous

 

economical

 
Illustration
 
bracing

Bridge

 

excess

 

flanges

 

braced

 

design

 

imperfectly

 

vertical

 

bridge

 

economically

 
corrosion

increased
 

framed

 
effect
 

thickness

 

involves

 

heavier

 

considerable

 
provided
 
buckling
 

Though


stiffen
 

reduce

 

afforded

 

timber

 

triangles

 

Whipple

 

Murphy

 

equilateral

 

developed

 

Warren


earlier

 

general

 

lattice

 
apparent
 

opportunity

 

arrangement

 

passed

 

naturally

 

America

 

Section