FREE BOOKS

Author's List




PREV.   NEXT  
|<   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190  
191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   >>   >|  
ion must be studied, and material must be added to resist erecting stresses. In the case of the St Louis bridge, half arches were built out on either side of each pier, so that the load balanced. Skeleton towers on the piers supported chains attached to the arched ribs at suitable points. In spite of careful provision, much difficulty was experienced in making the connexion at the crown, from the expansion due to temperature changes. The Douro bridge was similarly erected. The girders of the side spans were rolled out so as to overhang the great span by 105 ft., and formed a platform from which parts of the arch could be suspended. Dwarf towers, built on the arch ring at the fifth panel from either side, helped to support the girder above, in erecting the centre part of the arch (Seyrig, _Proc. Inst. C.E._ lxiii. p. 177). The great cantilever bridges have been erected in the same way, and they are specially adapted for erection by building out. _Straining Actions and Working Stresses._ 17. In metal bridges wrought iron has been replaced by mild steel--a stronger, tougher and better material. Ingot metal or mild steel was sometimes treacherous when first introduced, and accidents occurred, the causes of which were obscure. In fact, small differences of composition or variations in thermal treatment during manufacture involve relatively large differences of quality. Now it is understood that care must be taken in specifying the exact quality and in testing the material supplied. Structural wrought iron has a tenacity of 20 to 221/2 tons per sq. in. in the direction of rolling, and an ultimate elongation of 8 or 10% in 8 in. Across the direction of rolling the tenacity is about 18 tons per sq. in., and the elongation 3% in 8 in. Steel has only a small difference of quality in different directions. There is still controversy as to what degree of hardness, or (which is nearly the same thing) what percentage of carbon, can be permitted with safety in steel for structures. The qualities of steel used may be classified as follows:--(a) Soft steel, having a tenacity of 221/2 to 26 tons per sq. in., and an elongation of 32 to 24% in 8 in. (b) Medium steel, having a tenacity of 26 to 34 tons per sq. in., and 28 to 25% elongation. (c) Moderately hard steel, having a tenacity of 34 to 37 tons per sq. in., and 17% elongation, (d) Hard steel, having a tenacity of 37 to 40 tons per sq. in., and 10% elongation. Soft steel is used fo
PREV.   NEXT  
|<   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190  
191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   >>   >|  



Top keywords:

elongation

 

tenacity

 
quality
 

material

 

bridges

 
erected
 

towers

 
rolling
 
differences
 

bridge


erecting
 

wrought

 

direction

 

Structural

 

supplied

 

testing

 

thermal

 

composition

 

variations

 
treatment

obscure
 

accidents

 

occurred

 
manufacture
 
understood
 

involve

 

classified

 
safety
 

structures

 

qualities


Medium
 

Moderately

 

permitted

 
difference
 

introduced

 

directions

 

Across

 

percentage

 

carbon

 
controversy

degree

 
hardness
 

ultimate

 
erection
 
making
 

connexion

 
expansion
 

experienced

 

difficulty

 
careful