FREE BOOKS

Author's List




PREV.   NEXT  
|<   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161  
162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   >>   >|  
limits of working stress in public and railway bridges are prescribed by law. The development of theory has advanced _pari passu_ with the demand for bridges of greater strength and span and of more complex design, and there is now little uncertainty in calculating the stresses in any of the types of structure now adopted. In the modern metal bridge every member has a definite function and is subjected to a calculated straining action. Theory has been the guide in the development of bridge design, and its trustworthiness is completely recognized. The margin of uncertainty which must be met by empirical allowances on the side of safety has been steadily diminished. The larger the bridge, the more important is economy of material, not only because the total expenditure is more serious, but because as the span increases the dead weight of the structure becomes a greater fraction of the whole load to be supported. In fact, as the span increases a point is reached at which the dead weight of the superstructure becomes so large that a limit is imposed to any further increase of span. [Illustration: FIG. 2.--Bridge of Alcantara.] HISTORY OF BRIDGE BUILDING [Illustration: FIG. 3.--Ponte Salario.] 4. _Roman Bridges_.--The first bridge known to have been constructed at Rome over the Tiber was the timber Pons Sublicius, the bridge defended by Horatius. The Pons Milvius, now Ponte Molle, was reconstructed in stone by M. Aemilius Scaurus in 109 B.C., and some portions of the old bridge are believed to exist in the present structure. The arches vary from 51 to 79 ft. span. The Pons Fabricius (mod. Ponte dei Quattro Capi), of about 62 B.C., is practically intact; and the Pons Cestius, built probably in 46 B.C., retains much of the original masonry. The Pons Aelius, built by Hadrian A.D. 134 and repaired by Pope Nicholas II. and Clement IX., is now the bridge of St Angelo. It had eight arches, the greatest span being 62 ft.[1] Dio Cassius mentions a bridge, possibly 3000 to 4000 ft. in length, built by Trajan over the Danube in A.D. 104. Some piers are said still to exist. A bas-relief on the Trajan column shows this bridge with masonry piers and timber arches, but the representation is probably conventional (fig. 1). Trajan also constructed the bridge of Alcantara in Spain (fig. 2), of a total length of 670 ft., at 210 ft. above the stream. This had six arches and was built of stone blocks without cement. The bridge of Narses
PREV.   NEXT  
|<   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161  
162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   >>   >|  



Top keywords:
bridge
 

arches

 

Trajan

 

structure

 

length

 
Alcantara
 

Illustration

 

increases

 

weight

 

masonry


uncertainty

 

development

 

constructed

 

greater

 
design
 

timber

 

bridges

 
Aemilius
 
retains
 

Cestius


Scaurus
 

portions

 
present
 

Fabricius

 

original

 

Quattro

 

practically

 

intact

 

believed

 

representation


conventional

 
column
 
relief
 

blocks

 

cement

 

Narses

 

stream

 

Clement

 

Angelo

 

Nicholas


Hadrian

 

repaired

 

reconstructed

 

possibly

 
Danube
 

mentions

 

Cassius

 
greatest
 
Aelius
 

HISTORY