FREE BOOKS

Author's List




PREV.   NEXT  
|<   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309  
310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   333   334   >>   >|  
finally becomes hereditary, _i.e._, develops in the descendants in the absence of the stimuli, becomes in our sense embryonic" (p. 180, 1881). Again, "form-characteristics which were originally acquired in post-embryonic life through functional adaptation may be developed in the embryo without the functional stimulus, and may in later development become more or less completely differentiated, and retain this differentiation without functional activity or with a minimum of it. But in the continued absence of functional activity they become atrophied ... and in the end disappear" (p. 201, 1881). This conception of the nature of hereditary transmission is an important one, and constitutes the first big step towards a real understanding of the historical element in organic form and activity. It supplies a practical criterion for the distinguishing of "heritage" characters from acquired characters, of palingenetic from cenogenetic--a criterion which descriptive morphology was unable to find.[484] The introduction of a functional moment into the concept of heredity was a methodological advance of the first importance, for it linked up in an understandable way the problems of embryology, and indirectly of all morphology, with the problem of hereditary transmission, and gave form and substance to the conception of the organism as an historical being. It is this element in Roux's theories that puts them so far in advance of those of Weismann. Weismann did not really tackle the big problem of the relation of form to function, and he left no place in his mechanical system of preformation for functional or second-period development; he conceived all development to be in Roux's sense embryonic, and due to the automatic unpacking of a complex germinal organisation. Roux himself was to a certain extent a preformationist, for the development of his first-period characters is conditioned by the inherited organisation of the germ-plasm, and is purely automatic. It was indeed his experiments on the frog's egg (1888) that supplied some of the strongest evidence in favour of the mosaic theory of development. The number of _Anlagen_ which he postulates in the germ is however small, and the germ-plasm in his conception of it has a relatively simple structure (p. 103, 1905). The transmission of acquired characters forms, of course, an integral part of Roux's conception of heredity and development, for without this transmission second-stage
PREV.   NEXT  
|<   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309  
310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   333   334   >>   >|  



Top keywords:

development

 

functional

 
transmission
 

conception

 
characters
 

activity

 

hereditary

 
embryonic
 

acquired

 

period


criterion

 

absence

 

heredity

 
automatic
 

historical

 

organisation

 
morphology
 

element

 

Weismann

 

advance


problem
 

system

 
mechanical
 
theories
 

preformation

 
relation
 

function

 

tackle

 

integral

 

germinal


supplied

 

strongest

 

mosaic

 
theory
 

number

 

postulates

 

favour

 

evidence

 

simple

 

experiments


Anlagen

 

complex

 
unpacking
 

extent

 

inherited

 

purely

 

conditioned

 

preformationist

 

structure

 
conceived