FREE BOOKS

Author's List




PREV.   NEXT  
|<   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42  
43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   >>   >|  
e boring a stream of water is forced down the hollow rods by a pump, passing back to the surface through the annular space between the rods and the walls of the drill hole. The cuttings are thus carried to the surface, leaving the bottom of the hole clean and unobstructed. For recovering the core and inspecting the bit and diamonds, the rods are raised at every 3 to 8 ft. of depth. This is done by a small drum and rope, operated by the driving engine. [Illustration: FIG. 8.--Little Champion Rock Drill.] [Illustration: FIG. 9.] Diamond drills of standard designs (fig. 8) bore holes from 1-9/16 to 2-3/4 in. diameter, yielding cores of 1 to 1-15/16 in. diameter, and are capable of reaching depths of a few hundred to 4000 ft. or more. They require from 8 to 30 boiler horse-power. Large machines will bore shallower holes up to 6, 9 or even 12 in. diameter. For operating in underground workings of mines, small and compact machines are sometimes mounted on columns (fig. 9). They bore 1-1/4 to 1-9/16 in. holes to depths of 300 to 400 ft., cores being 7/8 to 1 in. diameter. Hand-power drills are also built. In the South African goldfields several diamond drill holes from 4500 to 5200 ft. deep have been successfully bored. Rates of advance for core-drilling to moderate depths range usually from 2 to 3 ft. per hour, including ordinary delays, though in favourable rock much higher speeds are often attained. In deep holes the speeds diminish, because of time consumed in raising and lowering the rods. If no core is desired a "solid bit" is used. The drilling then proceeds faster, as it is only necessary to raise the rods occasionally, for examining the condition of the bit. [Illustration: FIG. 10. Diamond Drill Bit.] The driving engine has two inclined cylinders, coupled to a crank-shaft, by which, through gearing, the drill-rod is rotated. The rods are wrought iron or steel tubes, in 5 to 10 ft. lengths. For producing the feed two devices are employed, the differential screw and hydraulic cylinder. For the _differential feed_ (fig. 9) the engine has a hollow left-hand threaded screw-shaft, to which the rods are coupled. This shaft is driven by a spline and bevel gearing and is supported by a threaded feed-nut, carried in the lower bearing. Geared to the screw-shaft is a light counter-shaft. By properly proportioning the number of teeth in the system of
PREV.   NEXT  
|<   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42  
43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   >>   >|  



Top keywords:

diameter

 

depths

 

engine

 

Illustration

 
surface
 

drilling

 

driving

 

gearing

 

hollow

 

machines


drills

 

Diamond

 

coupled

 
carried
 
threaded
 
speeds
 

differential

 

proceeds

 

faster

 

higher


favourable

 

ordinary

 

including

 
delays
 

attained

 

diminish

 
desired
 
lowering
 

raising

 
consumed

supported
 

spline

 
driven
 

bearing

 
Geared
 

number

 

system

 
proportioning
 

properly

 

counter


cylinder

 
hydraulic
 

moderate

 

rotated

 
cylinders
 

inclined

 

examining

 

condition

 
wrought
 

producing