FREE BOOKS

Author's List




PREV.   NEXT  
|<   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41  
42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   >>   >|  
while drilling. The speed of rope-boring is therefore but little affected by increase of depth, while with rod-boring it falls off rapidly. In its simplest form the so-called "string of tools," suspended from the rope, is composed of the bit or drill, jars and rope-socket. The jars are a pair of sliding links, similar to those used for rod-boring, but serving a different purpose, viz. to produce a sharp shock on the upward stroke, as the jars come together, for loosening the bit should it tend to stick fast in the hole. A heavy bar (auger stem) is generally inserted between the jars and bit, for increasing the force of the blow. The weight of another bar above the jars (sinker-bar) keeps the rope taut. The length of stroke and feed are regulated by the "temper-screw" (fig. 7), a feed device resembling that used for rod-boring. Clamped to it is the drill rope, which is let out at intervals, as the hole is deepened. The bits usually range from 3 to 8 in. diameter, the speed of boring being generally between 20 and 40 ft. per 24 hours, according to the kind of rock. A great variety of special "fishing tools" are made, for use in case of breakage of parts in the hole or other accident. [Illustration: FIG. 7. Temper Screw.] 5. _Diamond Drill._--The methods described above are capable of boring holes vertically downward only. By the diamond drill, holes can be bored in any direction, from vertically downward to vertically upward. It has the further advantage of making an annular hole from which is obtained a core, furnishing a practically complete cross-section of the strata penetrated; the thickness and character of each stratum are shown, together with its depth below the surface. Thus, the diamond drill is peculiarly well adapted for prospecting mineral deposits from which samples are desired. The first practical application of diamonds for drilling in rock was made in 1863 by Professor Rudolph Leschot, a civil engineer of Paris. The apparatus consists essentially of a line of hollow rods, coupled by screw joints, an annular steel bit or crown, set with diamonds, being attached to the lower end. By means of a small engine on the surface the rods are rapidly rotated and fed down automatically as the hole deepened. The speed of rotation is from 300 to 800 revolutions per minute, depending on the character of the rock and diameter of the bit. Whil
PREV.   NEXT  
|<   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41  
42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   >>   >|  



Top keywords:

boring

 

vertically

 

diamond

 

diamonds

 
surface
 

annular

 

upward

 

stroke

 

generally

 

deepened


drilling

 

diameter

 

downward

 
character
 
rapidly
 
strata
 

thickness

 

stratum

 

penetrated

 

furnishing


direction

 

advantage

 

complete

 
section
 

practically

 

capable

 
making
 
obtained
 

Rudolph

 
attached

coupled
 

joints

 
engine
 

rotated

 
revolutions
 

minute

 

depending

 
automatically
 

rotation

 

hollow


desired

 
practical
 

application

 

samples

 
deposits
 

adapted

 

prospecting

 

mineral

 
apparatus
 

consists