FREE BOOKS

Author's List




PREV.   NEXT  
|<   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260  
261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   >>   >|  
acoid, a {001}, and two square pyramids, b {101} and c {201}. Crystals are usually twinned, and are often complex and difficult to decipher. There are three twin-laws, the twin-planes being (111), (101) and (110) respectively. Twinning according to the first law is effected by rotation about an axis normal to the sphenoidal face (111), the resulting form resembling the twins of blende and spinel. Twinning according to the second law can only be explained by reflection across the plane (101), not by rotation about an axis; chalcopyrite affords an excellent example of this comparatively rare type of symmetric twinning. Interpenetration twins (fig. 2) with (110) as twin-plane are of very rare occurrence. [Illustration: FIG. 1.] [Illustration: FIG. 2.] Crystals have imperfect cleavages parallel to the eight faces of the pyramid c {201}. The fracture is conchoidal, and the material is brittle. Hardness 4; specific gravity 4.2. The colour is brass-yellow, and the lustre metallic; the streak, or colour of the powder, is greenish-black. The mineral is especially liable to surface alteration, tarnishing with beautiful iridescent colours; a blue colour usually predominates, owing probably to the alteration of the chalcopyrite to covellite (CuS). The massive and compact mineral frequently exhibits this iridescent tarnish, and is consequently known to miners as "peacock ore" or "peacock copper." The massive mineral sometimes occurs in mammillary and botryoidal forms with a smooth brassy surface, and is then known to Cornish miners as "blister-copper-ore." Chalcopyrite or copper-pyrites may be readily distinguished from iron-pyrites (or pyrites), which it somewhat resembles in appearance, by its deeper colour and lower degree of hardness: the former is easily scratched by a knife, whilst the latter can only be scratched with difficulty or not at all. Chalcopyrite is decomposed by nitric acid with separation of sulphur and formation of a green solution; ammonia added in excess to this solution changes the green colour to deep blue and precipitates red ferric hydroxide. The chemical formula CuFeS2 corresponds with the percentage composition Cu=34.5, Fe=30.5, S=35.0. Analyses usually, however, show the presence of more iron, owing to the intimate admixture of iron-pyrites. Traces of gold, silver, selenium or thallium are sometimes present, and the mineral is sometimes worked as an ore of gold or silver. Chalcopyrite is o
PREV.   NEXT  
|<   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260  
261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   >>   >|  



Top keywords:
colour
 

pyrites

 

mineral

 

Chalcopyrite

 

copper

 

scratched

 

chalcopyrite

 

surface

 

solution

 
alteration

iridescent

 

Illustration

 

Crystals

 

silver

 

peacock

 

miners

 

rotation

 
Twinning
 
massive
 
Cornish

brassy

 

degree

 

botryoidal

 

whilst

 

easily

 

deeper

 

hardness

 

appearance

 
distinguished
 

smooth


blister
 
resembles
 

readily

 
Analyses
 
composition
 
presence
 

thallium

 

present

 
worked
 
selenium

Traces
 

intimate

 

admixture

 
percentage
 
corresponds
 

separation

 

sulphur

 

formation

 

ammonia

 

nitric