FREE BOOKS

Author's List




PREV.   NEXT  
|<   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177  
178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   >>   >|  
dinary carbon-filament incandescent lamp. This is used largely in the circuits of batteries, generators, and other sources of supply to prevent overload in case of short circuits on the line. These are cheap, durable, have large current-carrying capacities, and are not likely to set things afire when overheated. An additional advantage incident to their use for this purpose is that an overload on a circuit in which they are placed is visibly indicated by the glowing of the lamp. [Illustration: Fig. 117. Mica Card Resistance] [Illustration: Fig. 118. Iron-Wire Ballast] Obviously, the carbon-filament incandescent lamp, when used as a resistance, has, on account of the negative temperature coefficient of carbon, the property of presenting the highest resistance to the circuit when carrying no current, and of presenting a lower and lower resistance as the current and consequent heating increases. For some conditions of practice this is not to be desired, and the opposite characteristic of presenting low resistance to small currents and comparatively high resistance to large currents would best meet the conditions of practice. _Iron-Wire Ballast._ Claude D. Enochs took advantage of the very high positive temperature coefficient of iron to produce a resistance device having these characteristics. His arrangement possesses the compactness of the carbon-filament lamp and is shown in Fig. 118. The resistance element proper is an iron wire, wound on a central stem of glass, and this is included in an exhausted bulb so as to avoid oxidation. Such a resistance is comparatively low when cold, but when traversed by currents sufficient to heat it considerably will offer a very large increase of resistance to oppose the further increase of current. In a sense, it is a self-adjusting resistance, tending towards the equalization of the flow of current in the circuit in which it is placed. CHAPTER XII CONDENSERS Charge. A conducting body insulated from all other bodies will receive and hold a certain amount of electricity (a charge), if subjected to an electrical potential. Thus, referring to Fig. 119, if a metal plate, insulated from other bodies, be connected with, say, the positive pole of a battery, the negative pole of which is grounded, a current will flow into the plate until the plate is raised to the same potential as that of the battery pole to which it is connected. The amount of electricity that will f
PREV.   NEXT  
|<   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177  
178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   >>   >|  



Top keywords:

resistance

 

current

 
carbon
 

presenting

 

currents

 
circuit
 

filament

 
Ballast
 
insulated
 

Illustration


conditions
 

comparatively

 

positive

 

increase

 

temperature

 

negative

 

coefficient

 

practice

 

potential

 
amount

circuits
 

overload

 

electricity

 
incandescent
 
advantage
 

carrying

 

bodies

 
battery
 

connected

 

traversed


raised
 

considerably

 

grounded

 
sufficient
 

central

 

included

 

oxidation

 

exhausted

 

CONDENSERS

 
Charge

charge

 
CHAPTER
 

subjected

 
conducting
 
receive
 

proper

 
electrical
 

equalization

 

oppose

 
adjusting