FREE BOOKS

Author's List




PREV.   NEXT  
|<   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188  
189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   >>   >|  
c circuit is shown in Fig. 129. In thus placing the battery in series in the circuit between the two stations, as shown in Figs. 128 and 129, it is obvious that the transmitter at each station is compelled to vary the resistance of the entire circuit comprising the two lines in series, in order to affect the receiver at distant stations. This is in effect making the transmitter circuit twice as long as is necessary, as will be shown in the subsequent systems considered. Furthermore, the placing of the battery in series in the circuit of the two combined lines does not lend itself readily to the supply of current from a common source to more than a single pair of lines. [Illustration: Fig. 129. Battery in Series with Two Lines] _Series Substation Circuit._ The arrangement at the substations--consisting in placing the transmitter and the receiver in series in the line circuit, as shown in Figs. 128 and 129--is the simplest possible one, and has been used to a considerable extent, but it has been subject to the serious objection, where receivers having permanent magnets were used, of making it necessary to so connect the receiver in the line circuit that the steady current from the battery would not set up a magnetization in the cores of the receiver in such a direction as to neutralize or oppose the magnetization of the permanent magnets. As long as the current flowed through the receiver coils in such a direction as to supplement the magnetization of the permanent magnets, no harm was usually done, but when the current flowed through the receiver coils in such a way as to neutralize or oppose the magnetizing force of the permanent magnets, the action of the receiver was greatly interfered with. As a result, it was necessary to always connect the receivers in the line circuit in a certain way, and this operation was called _poling_. In order to obviate the necessity for poling and also to bring about other desirable features, it has been, until recently, almost universal practice to so arrange the receiver that it would be in the circuit of the voice currents passing over the line, but would not be traversed by direct currents, this condition being brought about by various arrangements of condensers, impedance coils, or induction coils, as will be shown later. During the year 1909, however, the adoption by several concerns of the so-called "direct-current" receiver has made it necessary for the direct current to flo
PREV.   NEXT  
|<   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188  
189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   >>   >|  



Top keywords:

receiver

 

circuit

 
current
 

magnets

 

permanent

 
series
 

magnetization

 
direct
 
transmitter
 

placing


battery
 

currents

 

Series

 

stations

 

receivers

 

flowed

 

called

 

poling

 

oppose

 
direction

neutralize
 

making

 

connect

 
operation
 
magnetizing
 

result

 

interfered

 
greatly
 

action

 

impedance


induction
 

condensers

 

arrangements

 
brought
 

During

 

concerns

 

adoption

 

condition

 

desirable

 
features

necessity

 
recently
 

passing

 
traversed
 
arrange
 

universal

 
practice
 

obviate

 

considerable

 
Furthermore