FREE BOOKS

Author's List




PREV.   NEXT  
|<   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193  
194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   >>   >|  
calling line of a pair of connected lines and the other in all cases with the called line. As shown in Fig. 132, the left-hand battery is connected with the line leading to Station A through the impedance coils _1_ and _2_. Likewise, the right-hand battery is connected to the line of Station B through the impedance coils _3_ and _4_. These four impedance coils are wound on separate cores and do not have any inductive relation whatsoever with each other. Condensers _5_ and _6_ are employed to completely isolate the lines conductively. Current from the left-hand battery, therefore, passes only to Station A, and current from the right-hand battery to Station B. Whenever the transmitter at Station A is actuated the undulations of current which it produces in the line cause a varying difference of potential across the outside terminals of the two impedance coils _1_ and _2_. This means that the two left-hand terminals of condensers _5_ and _6_ are subjected to a varying difference of potential and these, of course, by electrostatic induction, cause the right-hand terminals of these condensers to be subject to a correspondingly varying difference of potential. From this it follows that alternating currents will be impressed upon the right-hand line and these will affect the receiver at Station B. A rough way of expressing the action of this circuit is to consider it in the same light as that of the impedance-coil circuit shown in Fig. 131, and to consider that the voice currents originating in one line are prevented from passing through the bridge paths at the central office on account of the impedance, and are, therefore, forced to continue on the line, being allowed to pass readily by the condensers in series between the two lines. _Kellogg Substation Arrangement._ An interesting form of substation circuit which is employed by the Kellogg Company in all of its common-battery telephones is shown in Fig. 132. In passing, it may be well to state that almost any of the substation circuits shown in this chapter are capable of working with any of the central-office circuits. The different ones are shown for the purpose of giving a knowledge of the various substation circuits that are employed, and, as far as possible, to associate them with the particular central-office arrangements with which they are commonly used. In this Kellogg substation arrangement the line circuit passes first through the transmitter and then divide
PREV.   NEXT  
|<   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193  
194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   >>   >|  



Top keywords:

impedance

 

Station

 
battery
 

substation

 

circuit

 
varying
 

Kellogg

 
employed
 
circuits
 

difference


office
 

potential

 

central

 

terminals

 

connected

 

condensers

 

current

 

transmitter

 

passes

 
passing

currents
 

interesting

 

forced

 
account
 
continue
 

bridge

 

prevented

 
allowed
 

Substation

 

Arrangement


series
 

readily

 

capable

 
associate
 

knowledge

 

arrangements

 

divide

 

arrangement

 

commonly

 
giving

purpose

 
telephones
 

common

 
chapter
 
originating
 

working

 
Company
 

subjected

 

relation

 
whatsoever