FREE BOOKS

Author's List




PREV.   NEXT  
|<   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190  
191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   >>   >|  
d _4_; thence over the upper limb of each line, through the transmitter at each station, and back over the lower limbs of the line, through the windings _1_ and _3_, where the two paths reunite and pass to the negative pole of the battery. It is evident that when neither transmitter is being used the current flowing through both lines will be a steady current and that, therefore, neither line will have an inductive effect on the other. When, however, the transmitter at Station A is used the variations in the resistance caused by it will cause undulations in the current. These undulations, passing through the windings _1_ and _2_ of the repeating coil, will cause, by electromagnetic induction, alternating currents to flow in the windings _3_ and _4_, and these alternating currents will be superimposed on the steady currents flowing in that line and will affect the receiver at Station B, as will be pointed out. The reverse conditions exist when Station B is talking. _Bell Substation Arrangement._ The substation circuits at the stations in Fig. 130 are illustrative of one of the commonly employed methods of preventing the steady current from the battery from flowing through the receiver coil. This particular arrangement is that employed by the common-battery instruments of the various Bell companies. Considering the action at Station B, it is evident that the steady current will pass through the transmitter and through the secondary winding of the induction coil, and that as long as this current is steady no current will flow through the telephone receiver. The receiver, transmitter, and primary winding of the induction coil are, however, included in a local circuit with the condenser. The presence of the condenser precludes the possibility of direct current flowing in this path. Considering Station A as a receiving station, it is evident that the voice currents coming to the station over the line will pass through the secondary winding and will induce alternating currents in the primary winding which will circulate through the local circuit containing the receiver and the condenser, and thus actuate the receiver. The considerations are not so simple when the station is being treated as a transmitting station. Under this condition the steady current passes through the transmitter in an obvious manner. It is clear that if the local circuit containing the receiver did not exist, the circuit would be operative as a transmit
PREV.   NEXT  
|<   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190  
191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   >>   >|  



Top keywords:

current

 

receiver

 
transmitter
 

steady

 

currents

 
station
 

Station

 
winding
 
circuit
 

flowing


evident
 

alternating

 

induction

 

windings

 

condenser

 

battery

 

employed

 

Considering

 

undulations

 
primary

secondary
 

included

 

telephone

 
manner
 
instruments
 

common

 

transmit

 
arrangement
 

companies

 

obvious


action
 

operative

 

transmitting

 
considerations
 

receiving

 

coming

 

induce

 

actuate

 

direct

 
circulate

condition

 
treated
 

presence

 
simple
 
possibility
 

precludes

 
passes
 

superimposed

 

inductive

 
effect