FREE BOOKS

Author's List




PREV.   NEXT  
|<   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144  
145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   >>   >|  
f this, that is, the translation of the energy of mechanical motion into that of an electrical current. In addition to these primary functions which underlie the art of telephony, the electromagnetic coil or helix serves a wide field of usefulness in cases where no mechanical motion is involved. As impedance coils, they serve to exert important influences on the flow of currents in circuits, and as induction coils, they serve to translate the energy of a current flowing in one circuit into the energy of a current flowing in another circuit, the translation usually, but not always, being accompanied by a change in voltage. When a current flows through the convolutions of an ordinary helix, the helix will exhibit the properties of a magnet even though the substance forming the core of the helix is of non-magnetic material, such as air, or wood, or brass. If, however, a mass of iron, such as a rod or a bundle of soft iron wires, for instance, is substituted as a core, the magnetic properties will be enormously increased. The reason for this is, that a given magnetizing force will set up in iron a vastly greater number of lines of magnetic force than in air or in any other non-magnetic material. Magnetizing Force. The magnetizing force of a given helix is that force which tends to drive magnetic lines of force through the magnetic circuit interlinked with the helix. It is called _magnetomotive force_ and is analogous to electromotive force, that is, the force which tends to drive an electric current through a circuit. The magnetizing force of a given helix depends on the product of the current strength and the number of turns of wire in the helix. Thus, when the current strength is measured in amperes, this magnetizing force is expressed as ampere-turns, being the product of the number of amperes flowing by the number of turns. The magnetizing force exerted by a given current, therefore, is independent of anything except the number of turns, and the material within the core or the shape of the core has no effect upon it. Magnetic Flux. The total magnetization resulting from a magnetizing force is called the magnetic flux, and is analogous to current. The intensity of a magnetic flux is expressed by the number of magnetic lines of force in a square centimeter or square inch. While the magnetomotive force or magnetizing force of a given helix is independent of the material of the core, the flux which it sets up is
PREV.   NEXT  
|<   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144  
145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   >>   >|  



Top keywords:

current

 

magnetic

 
magnetizing
 
number
 

circuit

 
material
 

energy

 
flowing
 

called

 

amperes


expressed
 

motion

 

product

 

analogous

 

magnetomotive

 

translation

 

strength

 

properties

 

mechanical

 

square


independent
 

vastly

 
greater
 

Magnetizing

 

reason

 
interlinked
 

magnetization

 

Magnetic

 

resulting

 

centimeter


intensity

 

effect

 

measured

 

depends

 

electric

 
ampere
 

exerted

 

electromotive

 

important

 

impedance


involved

 

influences

 

translate

 

induction

 

currents

 
circuits
 
usefulness
 

telephony

 
electromagnetic
 

underlie