FREE BOOKS

Author's List




PREV.   NEXT  
|<   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272  
273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   >>   >|  
gh the fissures into which they find their way are seldom riven up to the surface. In the same way beneath the ground in non-volcanic countries we may discover at a great depth in the older, much-changed rock a vast number of these crevices, varying from a few inches to a hundred feet or more in width, which have been filled with lavas, the rock once molten having afterward cooled. In most cases these dikes are disclosed to us through the down-wearing of the earth that has removed the beds into which the dikes did not penetrate, thus disclosing the realm in which the disturbances took place. Where, as is occasionally the case in deep mines, or on some bare rocky cliff of great height, we can trace a dike in its upward course through a long distance, we find that we can never distinctly discover the lower point of its extension. No one has ever seen in a clear way the point of origin of such an injection. We can, however, often follow it upward to the place where there was no longer a rift into which it could enter. In its upward path the molten matter appears generally to have followed some previously existing fracture, a joint plane or a fault, which generally runs through the rocks on those planes. We can observe evidence that the material was in the state of igneous fluidity by the fact that it has baked the country rocks on either side of the fissure, the amount of baking being in proportion to the width of the dike, and thus to the amount of heat which it could give forth. A dike six inches in diameter will sometimes barely sear its walls, while one a hundred feet in width will often alter the strata for a great distance on either side. In some instances, as in the coal beds near Richmond, Va., dikes occasionally cut through beds of bituminous coal. In these cases we find that the coal has been converted into coke for many feet either side of a considerable injection. The fact that the dike material was molten is still further shown by the occurrence in it of fragments which it has taken up from the walls, and which may have been partly melted, and in most cases have clearly been much heated. Where dikes extend up through stratified beds which are separated from each other by distinct layers, along which the rock is not firmly bound together, it now and then happens, as noted by Mr. G.K. Gilbert, of the United States Geological Survey, that the lava has forced its way horizontally between these layers, graduall
PREV.   NEXT  
|<   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272  
273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   >>   >|  



Top keywords:

upward

 

molten

 
generally
 

occasionally

 
distance
 

injection

 

hundred

 
inches
 

layers

 

amount


discover

 

material

 

observe

 
igneous
 

strata

 

evidence

 
diameter
 

fissure

 

instances

 

baking


proportion
 

country

 
fluidity
 
barely
 

distinct

 
firmly
 

forced

 

horizontally

 

graduall

 

Survey


Gilbert

 

United

 

States

 
Geological
 

considerable

 

converted

 

Richmond

 

bituminous

 

planes

 

heated


extend

 

stratified

 
separated
 

melted

 

occurrence

 

fragments

 

partly

 

origin

 

afterward

 
cooled