FREE BOOKS

Author's List




PREV.   NEXT  
|<   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274  
275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   >>   >|  
t, we discover a means whereby it could have been retained in the liquid condition, even when forced for long distances through very narrow channels. Moreover, this explanation accounts for the fact which has long remained unexplained that dikes, except those formed about volcanic craters, rarely, if ever, rise to the surface. The materials contained in dikes differ exceedingly in their chemical and mineral character. These variations are due to the differences in Nature of the deposits whence they come, and also in a measure to exchanges which take place between their own substance and that of the rocks between which they are deposited. This process often has importance of an economic kind, for it not infrequently leads to the formation of metalliferous veins or other aggregations of ores, either in the dike itself or in the country rock. The way in which this is brought about may be easily understood by a familiar example. If flesh be placed in water which has the same temperature, no exchange of materials will take place; but if the water be heated, a circulation will be set up, which in time will bring a large part of the soluble matter into the surrounding water. This movement is primarily dependent on differences of temperature, and consequently differences in the quantity of soluble substances which the water seeks to take up. When a dike is injected into cooler rocks, such a slow circulation is induced. The water contained in the interstices of the stone becomes charged with mineral materials, if such exist in positions where it can obtain possession of them, and as cooling goes on, these dissolved materials are deposited in the manner of veins. These veins are generally laid down on the planes of contact between the two kinds of stone, but they may be formed in any other cavities which exist in the neighbourhood. The formation of such veins is often aided by the considerable shrinkage of the lava in the dike, which, when it cools, tends to lose about fifteen per cent of its volume, and is thus likely to leave a crevice next the boundary walls. Ores thus formed afford some of the commonest and often the richest mineral deposits. At Leadville, in Colorado, the great silver-bearing lodes probably were produced in this manner, wherein lavas, either those of dikes or those which flowed in the open air, have come in contact with limestones. The mineral materials originally in the once molten rock or in the limy bed
PREV.   NEXT  
|<   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274  
275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   >>   >|  



Top keywords:

materials

 

mineral

 
formed
 

differences

 
deposits
 

deposited

 

soluble

 
contact
 

manner

 

circulation


formation

 

temperature

 

contained

 
planes
 

generally

 

dissolved

 
discover
 

shrinkage

 

considerable

 

cavities


neighbourhood
 

charged

 
interstices
 
cooler
 

induced

 
positions
 

cooling

 

possession

 

obtain

 

fifteen


produced

 

silver

 

bearing

 
flowed
 

molten

 

originally

 

limestones

 

Colorado

 

Leadville

 

volume


injected

 

crevice

 
commonest
 

richest

 

afford

 

boundary

 

quantity

 

infrequently

 

unexplained

 
importance