FREE BOOKS

Author's List




PREV.   NEXT  
|<   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286  
287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   >>   >|  
zing than that derived from the mud of the great river. The group of glaciated soils differs in many ways from either of those mentioned. In it we find the mineral matter to have been broken up, transported, and accumulated without the influence of those conditions which ordinarily serve to mix rock _debris_ with organic matter during the process by which it is broken into bits. When vegetation came to preoccupy the fields made desolate by glacial action, it found in most places more than sufficient material to form soils, but the greater part of the matter was in the condition of pebbles of very hard rock and sand grains, fragments of silex. Fortunately, the broken-up state of this material, by exposing a great surface of the rocky matter to decay, has enabled the plants to convert a portion of the mass into earth fit for the uses of their roots. But as the time which has elapsed since the disappearance of the glaciers is much less than that occupied in the formation of ordinary soil, this decay has in most cases not yet gone very far, so that in a cubic foot of glaciated waste the amount of material available for plants is often only a fraction of that held in the soils of immediate derivation. In the greater portion of the fields occupied by glacial waste the processes which lead to the introduction of organic matter into the earth have not gone far enough to set in effective work the great laboratory which has to operate in order to give fertile soil. The pebbles hinder the penetration of the roots as well as the movement of insects and other animals. There has not been time enough for the overturning of trees to bring about a certain admixture of vegetable matter with the soil--in a word, the process of soil-making, though the first condition, that of broken-up rock, has been accomplished, is as yet very incomplete. It needs, indeed, care in the introduction of organic matter for its completion. It is characteristic of glacial soils that they are indefinitely deep. This often is a disadvantageous feature, for the reason that the soil water may pass so far down into the earth that the roots are often deprived of the moisture which they need, and which in ordinary soils is retained near the surface by the hard underlayer. On the other hand, where the glacial waste is made up of pebbles formed from rocks of varied chemical composition, which contain a considerable share of lime, potash, soda, and other substance
PREV.   NEXT  
|<   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286  
287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   >>   >|  



Top keywords:

matter

 

broken

 
glacial
 

material

 

pebbles

 
organic
 
introduction
 
greater
 

condition

 

surface


portion
 

ordinary

 

plants

 
occupied
 
glaciated
 
process
 
fields
 

movement

 

penetration

 
insects

animals

 

formed

 

overturning

 

chemical

 

varied

 
laboratory
 

potash

 

effective

 

substance

 

operate


considerable

 

hinder

 
fertile
 

composition

 

completion

 

characteristic

 

disadvantageous

 
indefinitely
 

feature

 

reason


deprived

 

underlayer

 

vegetable

 

admixture

 

retained

 
accomplished
 
incomplete
 

making

 

moisture

 

debris