FREE BOOKS

Author's List




PREV.   NEXT  
|<   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311  
312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   333   334   335   336   >>   >|  
r from their bodies in a yet more perfectly divided form. Hence it comes about that the limestone beds, so commonly formed beneath the open seas, are generally composed of materials which show but few and very imperfect fossils. Studying any series of limestone beds, we commonly find that each layer, in greater or less degree, is made up of rather massive materials, which evidently came to their place in the form of a limy mud. Very often this lime has crystallized, and thus has lost all trace of its original organic structure. One of the conspicuous features which may be observed in any succession of limestone beds is the partings or divisions into layers which occur with varied frequency. Sometimes at vertical intervals of not more than one or two inches, again with spacings of a score of feet, we find divisional planes, which indicate a sudden change in the process of rock formation. The lime disappears, and in place of it we have a thin layer of very fine detritus, which takes on the form of a clay. Examining these partings with care, we observe that on the upper surface on the limestone the remains of the animal which dwelt on the ancient sea floor are remarkably well preserved, they having evidently escaped the effect of the process which reduced their ancestors, whose remains constitute the layer, to mud. Furthermore, we note that the shaly layer is not only lacking in lime, but commonly contains no trace of animals such as might have dwelt on the bottom. The fossils it bears are usually of species which swam in the overlying water and came to the bottom after death. Following up through the layer of shale, we note that the ordinary bottom life gradually reappears, and shortly becomes so plentiful that the deposit resumes the character which it had before the interruption began. Often, however, we note that the assemblage of species which dwelt on the given area of sea floor has undergone a considerable change. Forms in existence in the lower layer may be lacking in the upper, their place being taken by new varieties. So far the origin of these divisional planes in marine deposits has received little attention from geologists; they have, indeed, assumed that each of these alterations indicates some sudden disturbance of the life of the sea floors. They have, however, generally assumed that the change was due to alterations in the depth of the sea or in the run of ocean currents. It seems to the writer, however
PREV.   NEXT  
|<   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311  
312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   333   334   335   336   >>   >|  



Top keywords:

limestone

 

bottom

 
change
 

commonly

 

generally

 
partings
 
evidently
 
process
 

divisional

 

sudden


planes
 

species

 

assumed

 
fossils
 
alterations
 
remains
 
materials
 

lacking

 

shortly

 
ordinary

gradually

 

Following

 

reappears

 

animals

 

constitute

 
overlying
 

Furthermore

 

geologists

 

attention

 

origin


marine

 

deposits

 
received
 

disturbance

 

floors

 

currents

 

writer

 
assemblage
 

interruption

 

deposit


resumes

 

character

 

undergone

 

varieties

 

ancestors

 
considerable
 
existence
 

plentiful

 

crystallized

 

massive