FREE BOOKS

Author's List




PREV.   NEXT  
|<   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314  
315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   >>   >|  
we know, be conveyed for any distance across the seas. Mingled with this sediment of an inorganic origin we almost invariably find a share of organic waste, derived not from creatures which dwelt upon the bottom, but from those which inhabited the higher-lying waters. If, now, we take a portion of the limestone layer which lies above or below the shale parting, and carefully dissolve out with acids the limy matter which it contains, we obtain a residuum which in general character, except so far as the particles may have been affected by the acid, is exactly like the material which forms the claylike partition. We are thus readily led to the conclusion that on the floors of the deeper seas there is constantly descending, in the form of a very slow shower, a mass of mineral detritus. Where organic life belonging to the species which secrete hard shells or skeletons is absent, this accumulation, proceeding with exceeding slowness, gradually accumulates layers, which take on a shaly character. Where limestone-making animals abound, they so increase the rate of deposition that the proportion of the mineral material in the growing strata is very much reduced; it may, indeed, become as small as one per cent of the mass. In this case we may say that the deposit of limestone grew a hundred times as fast as the intervening beds of shale. The foregoing considerations make it tolerably clear that the sea floor is in receipt of two diverse classes of sediment--those of a mineral and those of an organic origin. The mineral, or inorganic, materials predominate along the shores. They gradually diminish in quantity toward the open sea, where the supply is mainly dependent on the substances thrown forth from volcanoes, on pumice in its massive or its comminuted form--i.e., volcanic dust, states of lava in which the material, because of the vesicles which it contains, can float for ages before it comes to rest on the sea bottom. Variations in the volcanic waste contributed to the sea floor may somewhat affect the quantity of the inorganic sediments, but, as a whole, the downfalling of these fragments is probably at a singularly uniform rate. It is otherwise with the contributions of sediment arising from organic forms. This varies in a surprising measure. On the coral reefs, such as form in the mid oceans, the proportion of matter which has not come into the accumulation through the bodies of animals and plants may be as small as one t
PREV.   NEXT  
|<   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314  
315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   >>   >|  



Top keywords:

organic

 

mineral

 
inorganic
 

limestone

 

sediment

 
material
 
character
 
matter
 

proportion

 

volcanic


quantity
 

gradually

 

animals

 
accumulation
 
bottom
 
origin
 
supply
 

conveyed

 

thrown

 
massive

comminuted

 

pumice

 

volcanoes

 

substances

 

diminish

 
dependent
 

distance

 

foregoing

 

considerations

 

intervening


hundred

 

tolerably

 
materials
 

predominate

 

shores

 

classes

 

diverse

 
receipt
 

surprising

 

measure


varies

 

contributions

 

arising

 

bodies

 

plants

 
oceans
 
uniform
 

singularly

 

states

 

vesicles