FREE BOOKS

Author's List




PREV.   NEXT  
|<   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321  
322   323   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   >>   >|  
the origin of these impulses, and the way in which they are transmitted through the rocks, we obtain a basis for understanding earthquake shocks. The commonest cause of the jarrings in the earth is found in the formation of fractures, known as faults. If the reader has ever been upon a frozen lake at a time when the weather was growing colder, and the ice, therefore, was shrinking, he may have noted the rending sound and the slight vibration which comes with the formation of a crack traversing the sheet of ice. At such a time he feels a movement which is an earthquake, and which represents the simpler form of those tremors arising from the sudden rupture of fault planes. If he has a mind to make the experiment, he may hang a bullet by a thread from a small frame which rests upon the ice, and note that as the vibration occurs the little pendulum sways to and fro, thus indicating the oscillations of the ice. The same instrument will move in an identical manner when affected by a quaking in the rocks. Where the rocks are set in vibration by a rent which is formed in them, the phenomena are more complicated, and often on a vastly larger scale than in the simple conditions afforded by a sheet of ice. The rocks on either side of the rupture generally slide over each other, and the opposing masses are rent in their friction upon one another; the result is, not only the first jar formed by the initial fracture, but a great many successive movements from the other breakages which occur. Again, in the deeper parts of the crust, the fault fissures are often at the moment of their formation filled by a violent inrush of liquid rock. This, as it swiftly moves along, tears away masses from the walls, and when it strikes the end of the opening delivers a blow which may be of great violence. The nature of this stroke may be judged by the familiar instance where the relatively slow-flowing stream from a hydrant pipe is suddenly choked by closing the stopcock. Unless the plumber provides a cushion of air to diminish the energy of the blow, it is often strong enough to shake the house. Again, when steam or other gases are by a sudden diminution of pressure enabled to expand, they may deliver a blow which is exactly like that caused by the explosion of gunpowder, which, even when it rushes against the soft cushion of the air, may cause a jarring that may be felt as well as heard to a great distance. Such movements very frequently occur in
PREV.   NEXT  
|<   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321  
322   323   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   >>   >|  



Top keywords:

formation

 

vibration

 
rupture
 

cushion

 

sudden

 
formed
 
movements
 
earthquake
 

masses

 

strikes


delivers
 

result

 

opening

 
fissures
 
moment
 
successive
 
deeper
 

violence

 

breakages

 
filled

liquid

 

initial

 

fracture

 

inrush

 

violent

 
swiftly
 

deliver

 

caused

 

explosion

 

expand


enabled

 

diminution

 
pressure
 

gunpowder

 

distance

 

frequently

 

rushes

 
jarring
 

flowing

 

stream


hydrant

 

instance

 

stroke

 

judged

 

familiar

 
friction
 
suddenly
 

energy

 

diminish

 

strong