FREE BOOKS

Author's List




PREV.   NEXT  
|<   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96  
97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   >>   >|  
pace of darkness (fig. 28). Our conclusion, arrived at prior to experiment, is thus verified. Let us now return to a single plate; and here let me say that it is on the green light transmitted by the tourmaline that you are to fix your attention. We have to illustrate the two-sidedness of that green light, in contrast to the all-sidedness of ordinary light. The white light surrounding the green image, being ordinary light, is reflected by a plane glass mirror in all directions; the green light, on the contrary, is not so reflected. The image of the tourmaline is now horizontal; reflected upwards, it is still green; reflected sideways, the image is reduced to blackness, because of the incompetency of the green light to be reflected in this direction. Making the plate of tourmaline vertical, and reflecting it as before, it is the light of the upper image that is quenched; the side image now shows the green. This is a result of the greatest significance. If the vibrations of light were longitudinal, like those of sound, you could have no action of this kind; and this very action compels us to assume that the vibrations are transversal. Picture the thing clearly. In the one case the mirror receives, as it were, the impact of the _edges_ of the waves, the green light being then quenched. In the other case the _sides_ of the waves strike the mirror, and the green light is reflected. To render the extinction complete, the light must be received upon the mirror at a special angle. What this angle is we shall learn presently. The quality of two-sidedness conferred upon light by bi-refracting crystals may also be conferred upon it by ordinary reflection. Malus made this discovery in 1808, while looking through Iceland spar at the light of the sun reflected from the windows of the Luxembourg palace in Paris. I receive upon a plate of window-glass the beam from our lamp; a great portion of the light reflected from the glass is polarized. The vibrations of this reflected beam are executed, for the most part, parallel to the surface of the glass, and when the glass is held so that the beam shall make an angle of 58 deg. with the perpendicular to the glass, the _whole_ of the reflected beam is polarized. It was at this angle that the image of the tourmaline was completely quenched in our former experiment. It is called _the polarizing angle_. Sir David Brewster proved the angle of polarization of a medium to be that particular
PREV.   NEXT  
|<   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96  
97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   >>   >|  



Top keywords:

reflected

 

tourmaline

 

mirror

 

sidedness

 

quenched

 

ordinary

 

vibrations

 
polarized
 

experiment

 

action


conferred
 

render

 

discovery

 

Iceland

 
complete
 
extinction
 

refracting

 

crystals

 

quality

 

reflection


presently

 

received

 

special

 

completely

 
perpendicular
 

called

 

polarizing

 
polarization
 

medium

 

proved


Brewster

 

receive

 

window

 

windows

 

Luxembourg

 

palace

 

portion

 

parallel

 
surface
 

executed


contrast

 

surrounding

 

illustrate

 

attention

 

directions

 

sideways

 

reduced

 

upwards

 
horizontal
 

contrary