FREE BOOKS

Author's List




PREV.   NEXT  
|<   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136  
137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   >>   >|  
btained effects of polarization, far exceeding in magnitude those which could be obtained with non-luminous sources. At present the possession of our more perfect ray-filter, and more powerful source of heat, enables us to pursue this identity question to its utmost practical limits. [Illustration: Fig. 52.] Mounting our two Nicols (B and C, fig. 52) in front of the electric lamp, with their principal sections crossed, no light reaches the screen. Placing our thermo-electric pile (D) behind the prisms, with its face turned towards the source, no deflection of the galvanometer is observed. Interposing between the lamp (A) and the first prism (B) our ray-filter, the light previously transmitted through the first Nicol is quenched; and now the slightest turning of either Nicol opens a way for the transmission of the heat, a very small rotation sufficing to send the needle up to 90 deg.. When the Nicol is turned back to its first position, the needle again sinks to zero, thus demonstrating, in the plainest manner, the polarization of the heat. When the Nicols are crossed and the field is dark, you have seen, in the case of light, the effect of introducing a plate of mica between the polarizer and analyzer. In two positions the mica exerts no sensible influence; in all others it does. A precisely analogous deportment is observed as regards radiant heat. Introducing our ray-filter, the thermo-pile, playing the part of an eye as regards the invisible radiation, receives no heat when the eye receives no light; but when the mica is so turned as to make its planes of vibration oblique to those of the polarizer and analyzer, the heat immediately passes through. So strong does the action become, that the momentary plunging of the film of mica into the dark space between the Nicols suffices to send the needle up to 90 deg.. This is the effect to which the term 'depolarization' has been applied; the experiment really proving that with both light and heat we have the same resolution by the plate of mica, and recompounding by the analyzer, of the ethereal vibrations. Removing the mica and restoring the needle once more to 0 deg., I introduce between the Nicols a plate of quartz cut perpendicular to the axis; the immediate deflection of the needle declares the transmission of the heat, and when the transmitted beam is properly examined, it is found to be circularly polarized, exactly as a beam of light is polarized under the sa
PREV.   NEXT  
|<   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136  
137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   >>   >|  



Top keywords:

needle

 

Nicols

 

analyzer

 

filter

 

turned

 

thermo

 

deflection

 
receives
 

transmission

 

transmitted


observed
 

electric

 

crossed

 

polarizer

 
effect
 
polarization
 

polarized

 

source

 

passes

 

analogous


immediately

 

action

 

strong

 

oblique

 
precisely
 

invisible

 

radiant

 
Introducing
 

btained

 

radiation


deportment

 

vibration

 

effects

 

playing

 

planes

 

introduce

 

quartz

 

perpendicular

 
Removing
 

restoring


circularly

 

declares

 

properly

 

examined

 

vibrations

 

ethereal

 

depolarization

 

suffices

 
plunging
 

applied