FREE BOOKS

Author's List




PREV.   NEXT  
|<   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138  
139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   >>   >|  
neutralize, by permitting rays from another source to fall upon the opposite face of the pile. The needle is thus brought to zero. Cutting off the light by our ray-filter, and exciting the magnet, the needle is instantly deflected, proving that the magnet has opened a door for the heat, exactly as in Faraday's experiment it opened a door for the light. Thus, in every case brought under our notice, the substantial identity of light and radiant heat has been demonstrated. By the refined experiments of Knoblauch, who worked long and successfully at this question, the double refraction of heat, by Iceland spar, was first demonstrated; but, though he employed the luminous heat of the sun, the observed deflections were exceedingly small. So, likewise, those eminent investigators De la Povostaye and Desains succeeded in magnetizing a beam of heat; but though, in their case also, the luminous solar heat was employed, the deflection obtained did not amount to more than two or three degrees. With _obscure_ radiant heat the effect, prior to the experiments now brought before you, had not been obtained; but, with the arrangement here described, we obtain deflections from purely invisible heat, equal to 150 of the lower degrees of the galvanometer. Sec. 11. _Distribution of Heat in the Electric Spectrum_. We have finally to determine the position and magnitude of the invisible radiation which produces these results. For this purpose we employ a particular form of the thermo-pile. Its face is a rectangle, which by movable side-pieces can be rendered as narrow as desirable. Throwing a small and concentrated spectrum upon a screen, by means of an endless screw we move the rectangular pile through the entire spectrum, and determine in succession the thermal power of all its colours. [Illustration: SPECTRUM OF ELECTRIC LIGHT.] When this instrument is brought to the violet end of the spectrum, the heat is found to be almost insensible. As the pile gradually moves from the violet towards the red, it encounters a gradually augmenting heat. The red itself possesses the highest heating power of all the colours of the spectrum. Pushing the pile into the dark space beyond the red, the heat rises suddenly in intensity, and at some distance beyond the red it attains a maximum. From this point the heat falls somewhat more rapidly than it rose, and afterwards gradually fades away. Drawing a horizontal line to represent the length of
PREV.   NEXT  
|<   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138  
139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   >>   >|  



Top keywords:

brought

 

spectrum

 

gradually

 

employed

 

deflections

 

violet

 

radiant

 
demonstrated
 

experiments

 

colours


degrees
 

invisible

 

determine

 

obtained

 
luminous
 
opened
 

needle

 

magnet

 

desirable

 

Throwing


concentrated

 

narrow

 

rendered

 

pieces

 
represent
 

endless

 

screen

 
movable
 

rapidly

 

produces


results

 

radiation

 

magnitude

 

finally

 

position

 

purpose

 

thermo

 

rectangle

 
length
 

employ


rectangular

 

insensible

 

highest

 

heating

 

suddenly

 

intensity

 

possesses

 

augmenting

 
encounters
 

horizontal