FREE BOOKS

Author's List




PREV.   NEXT  
|<   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140  
141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   >>   >|  
SOLAR CHEMISTRY INVOLVED IN THIS EXPLANATION FOUCAULT'S EXPERIMENT PRINCIPLES OF ABSORPTION ANALOGY OF SOUND AND LIGHT EXPERIMENTAL DEMONSTRATION OF THIS ANALOGY RECENT APPLICATIONS OF THE SPECTROSCOPE SUMMARY AND CONCLUSION. We have employed as our source of light in these lectures the ends of two rods of coke rendered incandescent by electricity. Coke is particularly suitable for this purpose, because it can bear intense heat without fusion or vaporization. It is also black, which helps the light; for, other circumstances being equal, as shown experimentally by Professor Balfour Stewart, the blacker the body the brighter will be its light when incandescent. Still, refractory as carbon is, if we closely examined our voltaic arc, or stream of light between the carbon-points, we should find there incandescent carbon-vapour. And if we could detach the light of this vapour from the more dazzling light of the solid points, we should find its spectrum not only less brilliant, but of a totally different character from the spectra that we have already seen. Instead of being an unbroken succession of colours from red to violet, the carbon-vapour would yield a few bands of colour with spaces of darkness between them. What is true of the carbon is true in a still more striking degree of the metals, the most refractory of which can be fused, boiled, and reduced to vapour by the electric current. From the incandescent vapour the light, as a general rule, flashes in groups of rays of definite degrees of refrangibility, spaces existing between group and group, which are unfilled by rays of any kind. But the contemplation of the facts will render this subject more intelligible than words can make it. Within the camera is now placed a cylinder of carbon hollowed out at the top; in the hollow is placed a fragment of the metal thallium. Down upon this we bring the upper carbon-point, and then separate the one from the other. A stream of incandescent thallium-vapour passes between them, the magnified image of which is now seen upon the screen. It is of a beautiful green colour. What is the meaning of that green? We answer the question by subjecting the light to prismatic analysis. Sent through the prism, its spectrum is seen to consist of a single refracted band. Light of one degree of refrangibility--that corresponding to this particular green--is emitted by the thallium-vapour. We will now remove the thallium and put a bit of
PREV.   NEXT  
|<   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140  
141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   >>   >|  



Top keywords:

carbon

 

vapour

 

incandescent

 

thallium

 

stream

 

spectrum

 

refractory

 
spaces
 

refrangibility

 

points


ANALOGY
 

degree

 

colour

 

striking

 
existing
 
unfilled
 

darkness

 

flashes

 

groups

 

current


remove

 

electric

 

definite

 

boiled

 
general
 

emitted

 

reduced

 
degrees
 

metals

 

passes


magnified

 

consist

 

separate

 

single

 

screen

 

answer

 

question

 

subjecting

 
prismatic
 

meaning


beautiful

 

refracted

 

intelligible

 

analysis

 

subject

 

render

 

contemplation

 

Within

 
camera
 

hollow