FREE BOOKS

Author's List




PREV.   NEXT  
|<   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128  
129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   >>   >|  
t is always a result of absorption. Examine the water, then, in front of the lamp after the beam has passed through it: it is sensibly warm, and, if permitted to remain there long enough, it might be made to boil. This is due to the absorption, by the water, of a certain portion of the electric beam. But a portion passes through unabsorbed, and does not at all contribute to the heating of the water. Now, ice is also in great part transparent to these latter rays, and therefore is but little melted by them. Hence, by employing the portion of the beam transmitted by water, we are able to keep our lens intact, and to produce by means of it a sharply defined focus. Placed at that focus, white paper is not ignited, because it fails to absorb the rays emergent from the ice-lens. At the same place, however, black paper instantly burns, because it absorbs the transmitted light. And here it may be useful to refer to an estimate by Newton, based upon doubtful data, but repeated by various astronomers of eminence since his time. The comet of 1680, when nearest to the sun, was only a sixth of the sun's diameter from his surface. Newton estimated its temperature, in this position, to be more than two thousand times that of molted iron. Now it is clear from the foregoing experiments that the temperature of the comet could not be inferred from its nearness to the sun. If its power of absorption were sufficiently low, the comet might carry into the sun's neighbourhood the chill of stellar space. Sec. 4. _Combustion of a Diamond by Radiant Heat_. The experiment of burning a diamond in oxygen by the concentrated rays of the sun was repeated at Florence, in presence of Sir Humphry Davy, on Tuesday, the 27th of March, 1814. It is thus described by Faraday:--'To-day we made the grand experiment of burning the diamond, and certainly the phenomena presented were extremely beautiful and interesting. A glass globe containing about 22 cubical inches was exhausted of air, and filled with pure oxygen. The diamond was supported in the centre of this globe. The Duke's burning-glass was the instrument used to apply heat to the diamond. It consists of two double convex lenses, distant from each other about 31/2 feet; the large lens is about 14 or 15 inches in diameter, the smaller one about 3 inches in diameter. By means of the second lens the focus is very much reduced, and the heat, when the sun shines brightly, rendered very intense. The
PREV.   NEXT  
|<   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128  
129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   >>   >|  



Top keywords:

diamond

 

portion

 

burning

 

inches

 

diameter

 

absorption

 

transmitted

 
Newton
 

oxygen

 

temperature


experiment
 

repeated

 

concentrated

 

Florence

 
presence
 
result
 

shines

 

reduced

 

Tuesday

 

brightly


Humphry

 

Diamond

 

intense

 

sufficiently

 
inferred
 

nearness

 

rendered

 
neighbourhood
 

Combustion

 

Radiant


stellar

 

Faraday

 

supported

 

centre

 

filled

 

instrument

 

lenses

 

distant

 
convex
 

double


consists

 

exhausted

 

phenomena

 

presented

 

extremely

 

beautiful

 

interesting

 

cubical

 
smaller
 

position