FREE BOOKS

Author's List




PREV.   NEXT  
|<   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133  
134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   >>   >|  
therefore, that we owe our rains and snows. They are absorbed close to the surface of the ocean, and warm the superficial water, while the luminous rays plunge to great depths without producing any sensible effect. But we can proceed further than this. Here is a large flask containing a freezing mixture, which has so chilled the flask, that the aqueous vapour of the air of this room has been condensed and frozen upon it to a white fur. Introducing the alum-cell, and placing the coating of hoar-frost at the intensely luminous focus of the electric lamp, not a spicula of the dazzling frost is melted. Introducing the iodine-cell, and removing the alum, a broad space of the frozen coating is instantly melted away. Hence we infer that the snow and ice, which feed the Rhone, the Rhine, and other rivers with glaciers for their sources, are released from their imprisonment upon the mountains by the invisible ultra-red rays of the sun. Sec. 6. _Identity of Light and Radiant Heat. Reflection from Plane and Curved Surfaces. Total Reflection of Heat_. The growth of science is organic. That which today is an _end_ becomes to-morrow a _means_ to a remoter end. Every new discovery in science is immediately made the basis of other discoveries, or of new methods of investigation. Thus about fifty years ago OErsted, of Copenhagen, discovered the deflection of a magnetic needle by an electric current; and about the same time Thomas Seebeck, of Berlin, discovered thermoelectricity. These great discoveries were soon afterwards turned to account, by Nobili and Melloni, in the construction of an instrument which has vastly augmented our knowledge of radiant heat. This instrument, which is called a _thermo-electric pile_, or more briefly a thermo-pile, consists of thin bars of bismuth and antimony, soldered alternately together at their ends, but separated from each other elsewhere. From the ends of this 'thermo-pile' wires pass to a galvanometer, which consists of a coil of covered wire, within and above which are suspended two magnetic needles, joined to a rigid system, and carefully defended from currents of air. The action of the arrangement is this: the heat, falling on the pile, produces an electric current; the current, passing through the coil, deflects the needles, and the magnitude of the deflection may be made a measure of the heat. The upper needle moves over a graduated dial far too small to be directly seen. It is now, h
PREV.   NEXT  
|<   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133  
134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   >>   >|  



Top keywords:

electric

 

current

 

thermo

 

coating

 

frozen

 

Introducing

 

melted

 
discovered
 

discoveries

 

deflection


instrument
 

Reflection

 

science

 

magnetic

 
needle
 
consists
 

luminous

 

needles

 

thermoelectricity

 

Thomas


measure

 

Berlin

 

Seebeck

 

turned

 
construction
 

vastly

 

Melloni

 
Nobili
 

account

 

directly


OErsted

 

Copenhagen

 

augmented

 

graduated

 

knowledge

 

investigation

 

currents

 

defended

 
separated
 

action


carefully

 

joined

 

covered

 

system

 

galvanometer

 

arrangement

 

called

 

passing

 
produces
 

suspended