FREE BOOKS

Author's List




PREV.   NEXT  
|<   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123  
124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   >>   >|  
upon surfaces prepared with such substances, we reveal both the existence and the extent of the ultraviolet spectrum. Sec. 2. _Ultra-violet Rays: Fluorescence_. The method of exhibiting the action of the ultraviolet rays by their chemical action has been long known; indeed, Thomas Young photographed the ultra-violet rings of Newton. We have now to demonstrate their presence in another way. As a general rule, bodies either transmit light or absorb it; but there is a third case in which the light falling upon the body is neither transmitted nor absorbed, but converted into light of another kind. Professor Stokes, the occupant of the chair of Newton in the University of Cambridge, has demonstrated this change of one kind of light into another, and has pushed his experiments so far as to render the invisible rays visible. A large number of substances examined by Stokes, when excited by the invisible ultra-violet waves, have been proved to emit light. You know the rate of vibration corresponding to the extreme violet of the spectrum; you are aware that to produce the impression of this colour, the retina is struck 789 millions of millions of times in a second. At this point, the retina ceases to be useful as an organ of vision; for, though struck by waves of more rapid recurrence, they are incompetent to awaken the sensation of light. But when such non-visual waves are caused to impinge upon the molecules of certain substances--on those of sulphate of quinine, for example--they compel those molecules, or their constituent atoms, to vibrate; and the peculiarity is, that the vibrations thus set up are _of slower period_ than those of the exciting waves. By this lowering of the rate of vibration through the intermediation of the sulphate of quinine, the invisible rays are brought within the range of vision. We shall subsequently have abundant opportunity for learning that transparency to the visible by no means involves transparency to the invisible rays. Our bisulphide of carbon, for example, which, employed in prisms, is so eminently suitable for experiments on the visual rays, is by no means so suitable for these ultra-violet rays. Flint glass is better, and rock crystal is better than flint glass. A glass prism, however, will suit our present purpose. Casting by means of such a prism a spectrum, not upon the white surface of our screen, but upon a sheet of paper which has been wetted with a saturated solution of
PREV.   NEXT  
|<   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123  
124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   >>   >|  



Top keywords:

violet

 
invisible
 

spectrum

 

substances

 

Stokes

 

quinine

 

experiments

 

sulphate

 

vision

 

transparency


visible

 

molecules

 

action

 

visual

 

struck

 

ultraviolet

 

millions

 

retina

 

vibration

 

suitable


Newton

 

vibrations

 

incompetent

 

peculiarity

 

vibrate

 

recurrence

 

sensation

 

impinge

 

compel

 

constituent


caused

 

awaken

 
abundant
 
present
 

crystal

 

purpose

 

Casting

 

saturated

 

wetted

 

screen


surface

 

solution

 

eminently

 

prisms

 

lowering

 

intermediation

 

brought

 

exciting

 

slower

 
period