FREE BOOKS

Author's List




PREV.   NEXT  
|<   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308  
309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   333   >>   >|  
g respectively to x1^0, ... xn^0 when t = t^0, are those determined by continuation of these series. If the result of solving these n equations for x1^0, ... xn^0 be written in the form [omega]1(x1, ... xnt) = x1^0, ... [omega]n(x1, ... xnt) = xn^0, it is at once evident that the differential equation df/dt + [phi]1 df/dx1 + ... + [phi]n df/dxn = 0 possesses n integrals, namely, the functions [omega]1, ... [omega]n, which are developable about the values (x1^0 ... xn^0t^0) and reduce respectively to x1, ... xn when t = t^0. And in fact it has no other integrals so reducing. Thus this equation also possesses a unique integral reducing when t = t^0 to an arbitrary function [psi](x1, ... xn), this integral being. [psi]([omega]1, ... [omega]n). Conversely the existence of these _principal_ integrals [omega]1, ... [omega]n of the partial equation establishes the existence of the specified solutions of the ordinary equations dxi/dt = [phi]i. The following sketch of the proof of the existence of these principal integrals for the case n = 2 will show the character of more general investigations. Put x for x - x^0, &c., and consider the equation a(xyt) df/dx + b(xyt) df/dy = df/dt, wherein the functions a, b are developable about x = 0, y = 0, t = 0; say a(xyt) = a0 + ta1 + t^2a2/2! + ..., b(xyt) = b0 + tb1 + t^2b2/2! + ..., so that ad/dx + bd/dy = [delta]0 + t[delta]1 + 1/2t^2[delta]2 + ..., where [delta] = a_r d/dx + b_r d/dy. In order that f = p0 + tp1 + t^2p2/2! + ... wherein p0, p1 ... are power series in x, y, should satisfy the equation, it is necessary, as we find by equating like terms, that p1 = [delta]0 p0, p2 = [delta]0 p1 + [delta]1 p0, &c. and in general p_s+1 = [delta]0 p_s + s1 [delta]1 p_s-1 + ... + [delta]_s p0, where s_r = (s!)/(r!) (s - r)! Now compare with the given equation another equation A(xyt)dF/dx + B(xyt)dF/dy = dF/dt, wherein each coefficient in the expansion of either A or B is real and positive, and not less than the absolute value of the corresponding coefficient in the expansion of a or b. In the second equation let us substitute a series F = P0 + tP1 + t^2P2/2! + ..., wherein the coefficients in P0 are real and positive, and each not less than the absolute value of the corresponding coefficient in p0; then putting [Delta]r = A_r d/dx + B_r d/dy we obtain necessary
PREV.   NEXT  
|<   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308  
309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   333   >>   >|  



Top keywords:

equation

 

integrals

 
coefficient
 

existence

 

series

 
reducing
 
general
 
principal

integral

 

absolute

 
possesses
 

functions

 

equations

 
expansion
 
developable
 
positive

obtain
 

substitute

 

coefficients

 
putting
 

compare

 

satisfy

 

equating

 

reduce


values

 
unique
 

differential

 

result

 

continuation

 

determined

 

solving

 

evident


written
 

arbitrary

 

investigations

 

character

 

establishes

 
partial
 

Conversely

 

function


solutions

 

ordinary

 

sketch