FREE BOOKS

Author's List




PREV.   NEXT  
|<   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318  
319   320   321   322   323   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   >>   >|  
unctions of p1, ... pn of zero dimensions, the P1, ... Pn are homogeneous functions of p1, ... pn of dimension one, and the 1/2n(n - 1) relations (Xi Xj) = 0 are verified. So also are the n^2 relations (Pi Xi) = 1, (Pi Xj) = 0, (Pi Pj) = 0. Conversely, if X1, ... Xn be independent functions, each homogeneous of zero dimension in p1, ... pn satisfying the 1/2n(n - 1) relations (Xi Xj) = 0, then P1, ... Pn can be uniquely determined, by solving linear algebraic equations, such that P1 dX1 + ... + Pn dXn = p1 dx1 + ... + pn dxn. If now we put n + 1 for n, put z for x_n+1, Z for X_n+1, Qi for -Pi/P_n+1, for i = 1, ... n, put qi for -p_i/p_n+1 and [sigma] for q_n+1/Q_n+1, and then finally write P1, ... Pn, p1, ... pn for Q1, ... Qn, q1, ... qn, we obtain the following results: If ZX1 ... Xn, P1, ... Pn be functions of z, x1, ... xn, p1, ... pn, such that the expression dZ - P1 dX1 - ... - Pn dXn is identically equal to [sigma](dz - p1 dx1 - ... - pn dxn), and [sigma] not zero, then (1) the functions Z, X1, ... Xn, P1, ... Pn are independent functions of z, x1, ... xn, p1, ... pn, so that the equations z' = Z, x'i = Xi, p'i = Pi can be solved for z, x1, ... xn, p1, ... pn and determine a transformation which we call a (non-homogeneous) contact transformation; (2) the Z, X1, ... Xn verify the 1/2n(n + 1) identities [Z Xi] = 0, [Xi Xj] = 0. And the further identities [Pi Xi] = [sigma], [Pi Xj] = 0, [Pi Z] = [sigma]Pi, [Pi Pj] = 0, dZ dXi dPi [Z[sigma]] = [sigma]-- - [sigma]^2, [Xi [sigma]] = [sigma]---, [Pi [sigma]] = [sigma]--- dz dz dz are also verified. Conversely, if Z, x1, ... Xn be independent functions satisfying the identities [Z Xi] = 0, [Xi Xj] = 0, then [sigma], other than zero, and P1, ... Pn can be uniquely determined, by solution of algebraic equations, such that dZ - P1 dX1 - ... - Pn dXn = [sigma](dz - p1 dx1 - ... - p_n dx_n). Finally, there is a particular case of great importance arising when [sigma] = 1, which gives the results: (1) If U, X1, ... Xn, P1, ... Pn be 2n + 1 functions of the 2n independent variables x1, ... xn, p1, ... pn, satisfying the identity dU + P1 dx1 + ... + Pn dXn = p1 dx1 + ... + p_n dx_n, then the 2n functions P1, ... Pn, X1, ... Xn ar
PREV.   NEXT  
|<   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318  
319   320   321   322   323   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   >>   >|  



Top keywords:

functions

 

independent

 
equations
 

relations

 

identities

 
homogeneous

satisfying
 
results
 

transformation

 

determined

 
Conversely
 

uniquely


algebraic

 
dimension
 
verified
 
verify
 
identity
 

variables


contact

 
importance
 

arising

 

determine

 

solution

 

Finally


unctions

 
dimensions
 

linear

 

solving

 

finally

 

identically


expression

 

obtain

 
solved