FREE BOOKS

Author's List




PREV.   NEXT  
|<   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329  
330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   353   354   >>   >|  
nal equations for x1 ... xn can be reduced. It may be shown (1) that if z = [psi](t, x1, ... xn, c1, .. cn) + c be a complete integral of this equation, then pi = d[psi]/dx_i, d[psi]/dc_i = e_i are 2n equations giving the solution of the canonical equations referred to, where c1 ... cn and e1, ... en are arbitrary constants; (2) that if xi = Xi(t, x^01, ... pn^0), pi=Pi(t, x1^0, ... p^0n) be the principal solutions of the canonical equations for t = t^0, and [omega] denote the result of substituting these values in p1dH/dp1 + ... + pndH/dpn - H, and [Omega] = [int] [t0 to t] [omega]dt, where, after integration, [Omega] is to be expressed as a function of t, x1, ... xn, x1^0, ... xn^0, then z = [Omega] + z^0 is a complete integral of the partial equation. Application of theory of continuous groups to formal theories. A system of differential equations is said to allow a certain continuous group of transformations (see GROUPS, THEORY OF) when the introduction for the variables in the differential equations of the new variables given by the equations of the group leads, for all values of the parameters of the group, to the same differential equations in the new variables. It would be interesting to verify in examples that this is the case in at least the majority of the differential equations which are known to be integrable in finite terms. We give a theorem of very general application for the case of a simultaneous complete system of linear partial homogeneous differential equations of the first order, to the solution of which the various differential equations discussed have been reduced. It will be enough to consider whether the given differential equations allow the infinitesimal transformations of the group. It can be shown easily that sufficient conditions in order that a complete system [Pi]1f = 0 ... [Pi]kf = 0, in n independent variables, should allow the infinitesimal transformation Pf = 0 are expressed by k equations [Pi]_i Pf - P[Pi]_i f = [lambda]_i1 [Pi]1f + ... + [lambda]_ik [Pi]_kf. Suppose now a complete system of n - r equations in n variables to allow a group of r infinitesimal transformations (P1f, ..., Prf) which has an invariant subgroup of r - 1 parameters (P1f, ..., Pr-1f), it being supposed that the n quantities [Pi]1f, ..., [Pi]_n-r f, P1 f, ..., P_r f are not connected by an identical linear equation (with coefficients even depending on the inde
PREV.   NEXT  
|<   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329  
330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   353   354   >>   >|  



Top keywords:

equations

 

differential

 
variables
 

complete

 

system

 

transformations

 
infinitesimal
 
equation
 

lambda

 

partial


linear
 
expressed
 
continuous
 

parameters

 

values

 

canonical

 
reduced
 

solution

 

integral

 

finite


integrable

 

discussed

 

depending

 

application

 

general

 

homogeneous

 

theorem

 

simultaneous

 

quantities

 

supposed


Suppose

 

invariant

 

subgroup

 

easily

 

identical

 
coefficients
 
sufficient
 

conditions

 

transformation

 

independent


connected
 
principal
 

solutions

 

denote

 

result

 

substituting

 
giving
 

referred

 
constants
 

arbitrary