FREE BOOKS

Author's List




PREV.   NEXT  
|<   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328  
329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   353   >>   >|  
dimensions obtained by integrating the equations [X1f] = 0, ... [Xrf] = 0; or having obtained one integral of this system other than X1, ... Xr, say Xr+1, we may consider the system [X1f] = 0, ... [X_r+1 f] = 0, for which, again, we have a choice; and at any stage we may use Mayer's method and reduce the simultaneous linear equations to one equation involving parameters; while if at any stage of the process we find some but not all of the integrals of the simultaneous system, they can be used to simplify the remaining work; this can only be clearly explained in connexion with the theory of so-called function groups for which we have no space. One result arising is that the simultaneous system p1 = [phi]1, ... pr = [phi]r, wherein p1, ... pr are not involved in [phi]1, ... [phi]r, if it satisfies the 1/2r(r - 1) relations [pi - [phi]i, pj - [phi]j] = 0, has a solution z = [psi](x1, ... xn), p1 = d[psi]/dx1, ... pn = d[psi]/dxn, reducing to an arbitrary function of x_r+1, ... xn only, when x1 = x1^0, ... xr = xr^0 under certain conditions as to developability; a generalization of the theorem for linear equations. The problem of integration of this system is, as before, to put dz - [phi]1dx1 - ... - [phi]_r dx_r - p_r+1 dx_r+1 - ... - p_n dx_n into the form [sigma](d[zeta] - [omega]_r+1 + d[xi]_r+1 - ... - [omega]_n d[xi]_n); and here [zeta], [xi]_r+1, ... [xi]_n, [omega]_r+1, ... [omega]_n may be taken, as before, to be principal integrals of a certain complete system of linear equations; those, namely, determining the characteristic chains. Equations of dynamics. If L be a function of t and of the 2n quantities x1, ... xn, [.x]1, ... [.x]n, where [.x]i, denotes dxi/dt, &c., and if in the n equations d / dL \ dL --- (--------) = ---- dt \ dx_i / dx_i we put p_i = dL/d[.x]_i, and so express [.x]1 , ... [.x]_n in terms of t, x_i, ... x_n, p1, ... p_n, assuming that the determinant of the quantities d^2L/dx_i d[.x]_j is not zero; if, further, H denote the function of t, x1, ... xn, p1, ... pn, numerically equal to p1[.x]1 + ... + pn[.x]n - L, it is easy to prove that dpi/dt = -dH/dxi, dxi/dt = dH/dp_i. These so-called _canonical_ equations form part of those for the characteristic chains of the single partial equation dz/dt + H(t, x1, ... xn, dz/dx1, ..., dz/dx_n) = 0, to which then the solution of the origi
PREV.   NEXT  
|<   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328  
329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   353   >>   >|  



Top keywords:

equations

 

system

 
function
 

simultaneous

 

linear

 

quantities

 
called
 
characteristic
 

solution

 

chains


obtained
 
integrals
 
equation
 

determining

 

Equations

 

dynamics

 
integral
 

principal

 

complete

 

denotes


dimensions

 

canonical

 

partial

 

single

 

numerically

 

denote

 

integrating

 

express

 

determinant

 

assuming


integration

 

arising

 

relations

 

satisfies

 

involved

 
result
 
simplify
 

connexion

 

explained

 

remaining


theory
 
groups
 

process

 

conditions

 

arbitrary

 

developability

 
generalization
 

choice

 
problem
 

theorem