FREE BOOKS

Author's List




PREV.   NEXT  
|<   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   333  
334   335   336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   353   354   355   356   357   358   >>   >|  
ifferential coefficient of z_[rho] which enters in [Phi]_[sigma], say d^(k1 + ... + kn) z_[rho]/dx1^k1 ... dx_n^k_n, we have k1 < h_[rho] and k1 + ... + k_n <= h_[rho]. Let a1, ... an, b1, ... br, and b[rho]_(k1 ... kn) be a set of values of x1, ... x_n, z1, ... z_r and of the differential coefficients entering in [Phi]_[sigma] about which all the functions [Phi]1, ... [Phi]_r, are developable. Corresponding to each dependent variable z_[sigma], we take now a set of h_[sigma] functions of x2, ... xn, say [phi][sigma], [phi][sigma]^(1), ..., [phi][sigma]^(h-1) arbitrary save that they must be developable about a2, a3, ... an, and such that for these values of x2, ... xn, the function [phi]_[rho] reduces to b_[rho], and the differential coefficient d^(k2 + ... + kn) [phi]_[rho]^(k1)/dx2^k2 ... dx_n^kn reduces to b^kn_(k1 ... kn). Then the theorem is that there exists one, and only one, set of functions z1, ... z_r, of x2, ... x_n developable about a1, ... an satisfying the given differential equations, and such that for x1 = a1 we have z_[sigma] = [phi]_[sigma], dz_[sigma]/dx1 = [phi]_[sigma]^(1), ... d^(h_[sigma]-1) z_[sigma]/d^(h_[sigma]-1) x1 = [phi][sigma]^(h_[sigma]-1). And, moreover, if the arbitrary functions [phi]_[sigma], [phi]_[sigma]^(1) ... contain a certain number of arbitrary variables t1, ... tm, and be developable about the values t1^0, ... tm^0 of these variables, the solutions z1, ... zr will contain t1, ... tm, and be developable about t1^0, ... tm^0. Singular points of solutions. The proof of this theorem may be given by showing that if ordinary power series in x1 - -a1, ... xn - an, t1 - t1^0, ... tm - tm^0 be substituted in the equations wherein in z[sigma] the coefficients of (x1 - a1)^0, x1 - a1, ..., (x1 - a1)^(h_[sigma]-1) are the arbitrary functions [phi]_[sigma], [phi]_[sigma]^(1), ..., [phi]_[sigma]^h-1, divided respectively by 1, 1!, 2!, &c., then the differential equations determine uniquely all the other coefficients, and that the resulting series are convergent. We rely, in fact, upon the theory of monogenic analytical functions (see FUNCTION), a function being determined entirely by its development in the neighbourhood of one set of values of the independent variables, from which all its other values arise by _continuation_; it being of course understood that the coefficients in the differential equations are to be con
PREV.   NEXT  
|<   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   333  
334   335   336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   353   354   355   356   357   358   >>   >|  



Top keywords:

coefficient

 

ifferential

 
enters