FREE BOOKS

Author's List




PREV.   NEXT  
|<   328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352  
353   354   355   356   357   358   359   360   361   362   363   364   365   366   367   368   369   370   371   372   373   374   375   376   377   >>   >|  
the inclination of the secondary ray to the direction of vibration and to the wave-front. O x Q --------------------------- | / | / | / | / | / | / | / r| / | / | / | / | / | / | / | / | / P|/ FIG. 1. The latter question can only be treated in connexion with the dynamical theory (see below, S 11); but under all ordinary circumstances the result is independent of the precise answer that may be given. All that it is necessary to assume is that the effects of the successive zones gradually diminish, whether from the increasing obliquity of the secondary ray or because (on account of the limitation of the region of integration) the zones become at last more and more incomplete. The component vibrations at P due to the successive zones are thus nearly equal in amplitude and opposite in phase (the phase of each corresponding to that of the infinitesimal circle midway between the boundaries), and the series which we have to sum is one in which the terms are alternately opposite in sign and, while at first nearly constant in numerical magnitude, gradually diminish to zero. In such a series each term may be regarded as very nearly indeed destroyed by the halves of its immediate neighbours, and thus the sum of the whole series is represented by half the first term, which stands over uncompensated. The question is thus reduced to that of finding the effect of the first zone, or central circle, of which the area is [pi][lambda]r. We have seen that the problem before us is independent of the law of the secondary wave as regards obliquity; but the result of the integration necessarily involves the law of the intensity and phase of a secondary wave as a function of r, the distance from the origin. And we may in fact, as was done by A. Smith (_Camb. Math. Journ._, 1843, 3, p. 46), determine the law of the secondary wave, by comparing the result of the integration with that obtained by supposing the primary wave to pass on to P without resolution. Now as to the phase of the secondary wave, it might appear natural to suppose that it starts from any point Q with the phase of the
PREV.   NEXT  
|<   328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352  
353   354   355   356   357   358   359   360   361   362   363   364   365   366   367   368   369   370   371   372   373   374   375   376   377   >>   >|  



Top keywords:

secondary

 

result

 
integration
 

series

 

gradually

 

diminish

 
obliquity
 
successive
 

opposite

 

circle


independent
 
question
 
lambda
 

problem

 

inclination

 

involves

 
intensity
 

necessarily

 

effect

 

represented


neighbours

 

halves

 

stands

 

function

 

finding

 

reduced

 

uncompensated

 

central

 

origin

 

resolution


primary

 

obtained

 

supposing

 

starts

 

suppose

 
natural
 
comparing
 

determine

 

destroyed

 

distance


direction
 
limitation
 

region

 

theory

 

incomplete

 

connexion

 
treated
 

dynamical

 
component
 

vibrations